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Preface

Traffic and transportation became one of the most vivid application areas for multiagent and agent technology. Traffic and
transportation systems are not only spatially distributed, but also made up by subsystems with a high degree of autonomy.
Consequently, many applications in this domain can be adequately modelled as autonomous agents and multiagent systems.

This is the eight of a well established series of workshops since 2000. The international workshop series on Agents in
Traffic and Transportation (ATT) provides a forum for discussion for researchers and practitioners from the fields of artificial
intelligence, multiagent systems and transportation engineering. The series aims at bringing researchers and practitioners
together in order to set up visions on how agent technology can be used to model, simulate, and manage large-scale complex
transportation systems, both at micro and at macro level.

The eight edition of ATT was held together with the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), in Paris (France) on May 5–6. Previous editions were: Barcelona, together with Autonomous Agents
in 2000; Sydney, together with ITS 2001; New York, together with AAMAS 2004; Hakodate, together with AAMAS 2006;
Estoril, together with AAMAS 2008; Toronto, together with AAMAS 2010; Valencia, together with AAMAS 2012.

This edition of the workshop attracted the submission of 22 high-quality papers. All papers were thoroughly reviewed by at
least three renowned experts in the field. Based on the reviewers reports, and the unavoidable space and time constraints
associated with the workshop, it was possible to select only 11 of these submissions as full papers and 5 as short papers,
leading to an acceptance rate of 50% for full papers. In the process, a number of good and interesting papers had to be
rejected.

The present workshop proceedings cover a broad range of topics related to Agents in Traffic and Transportation, tackling
the use of tools and techniques based on agent-based simulation, optimization and resource sharing, smart city perspectives,
negotiation strategies and pedestrian dynamics. The papers were organized in 5 sessions in two wonderful days. Session 3
of the firs day was dedicated to the inspiring tutorials given by Neila Bhouri (Traffic and Traffic Control – Principles and
Engineering) and Jean-Michel Auberlet (Human factors in modeling a simulation for traffic and transportation: examples in
pedestrian and driver modeling).

Finally, we owe a big Thank you to all people - authors, reviewers, invited speakers and chairs of the AAMAS conference –
who dedicated their time and energy to make this edition of ATT a success.

Paris, May, 2014 Franziska Klügl, Giuseppe Vizzari, Jǐŕı Vokř́ınek
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Franziska Klügl (Örebro University)
Giuseppe Vizzari (University of Milano-Bicocca)
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ABSTRACT 
Agent based modelling has emerged as a promising tool to 
provide planners with sophisticated insights on social behaviour 
and the interdependencies characterising urban system, 
particularly with respect to traffic and transport planning. This 
paper presents an agent based model for the simulation of road 
traffic and transport demand of an urban area in south east 
Sydney, Australia. In this model, each agent represents an 
individual in the population of the study area. Each individual 
in the model has a travel diary which comprises a sequence of 
trips the person makes in a representative day as well as trip 
attributes such as travel mode, trip purpose, and departure time. 
Individuals in the model are associated with each other by their 
household relationship, which helps define the 
interdependencies of their travel diary and constrains their mode 
choice. This feature allows the model to not only realistically 
reproduce how the current population uses existing transport 
infrastructure but more importantly provide comprehensive 
insight into future transport demands of an urban area. The 
router of the traffic micro-simulation package TRANSIMS is 
incorporated in the agent based model to inform the actual 
travel time of each trip (which agents use in considering new 
travel modes) and changes of traffic density on the road 
network. Simulation results show very good agreement with 
survey data in terms of the distribution of trips done by the 
population by transport modes and by trip purposes, as well as 
the traffic density along the main road in the study area. 

Keywords  
Agent based model, TRANSIMS, road traffic, transport 
demand, urban planning 

1. INTRODUCTION 
The ability to realistically predict the demand of transport and 
traffic on the road network is of critical importance to efficient 
urban transport planning. Agent based models of urban 
planning have been increasingly introduced over the last 
decades. Miller et al. [9] developed model ILUTE (Integrated 
Land Use, Transportation, Environment) to simulate the 
evolution of the whole Toronto region in Canada with 
approximately 2 million households and 5 million people over 
an extended period of time. Besides giving useful information 
to analyse a wide range of transport and other urban policies, 
ILUTE also explicitly models travel demand as an outcome of 
the integration between individual and household decisions 

based on activities that they commence during a day. Raney et 
al. [13] presented a multi-agent traffic simulation for all of 
Switzerland with a population of around 7 million people. 
Balmer et al. [1] demonstrated the flexibility of agent based 
modelling by successfully developing an agent based model that 
satisfactorily simulate the traffic demands of two scenarios: (i) 
Zurich city in Switzerland with 170 municipalities and 12 
districts and (ii) Brandenburg city in Germany with 1008 traffic 
analysis zones. Many other agent based models for transport 
and urban planning can be found in the literature with different 
geographical scales and at various levels of complexity of 
agent’s behaviours and autonomy [2, 4, 5, 8, 14-19]. They 
proved that with a large real world scenario, agent based 
modelling, while being able to reproduce the complexity of an 
urban area and predict emergent behaviours in the area, has no 
issue with the performance [17]. They also show that for traffic 
and transport simulation purposes, agent based modelling has 
been considered as a reliable and well worth developing tool 
that planners can employ to build and evaluate alternative 
scenarios of an urban area. 

Many models that have been reported in the literature however 
are unable to explicitly simulate the dynamic interactions 
between the population growth, the transport/traffic demands, 
urban mobility (i.e. residential relocation of households), and 
the resulting changes in how the population perceive the 
liveability of an urban area. The agent based model presented in 
this paper aims at addressing this gap in the literature. The 
heterogeneity of the population is represented in the model in 
terms of demographic characteristics, environmental perception, 
and decision making behaviour. Inherently, the simulated 
population will evolve over time facilitating the interactions 
between dynamics of residential relocation of households, 
transportation behaviours and population growth. Thanks to this 
feature, the model can be used for exploring long-term (e.g. 20 
year time horizon) consequences of various transport and land 
use planning scenarios. 

Individuals are represented in this model as autonomous 
decision makers that make decisions that affect their 
environment (i.e. travel mode choice and relocation choice) as 
well as are required to make decisions in reaction to changes in 
their environment (e.g. family situation, employment). With 
respect to transportation, each individual has a travel diary 
which comprises a sequence of trips the person makes in a 
representative day as well as trip attributes such as travel mode, 
trip purpose, and departure time. Individuals in the model are 
associated with each other by their household relationship, 
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which helps define the interdependencies of their travel diary 
and constrains their mode choice. This feature, together with the 
interactions between urban mobility, transportation behaviours, 
and population growth, allows the model to not only 
realistically reproduce how the current population uses existing 
transport infrastructure but more importantly provide 
comprehensive insight into its future transport demands. The 
router of the traffic micro-simulation package TRANSIMS is 
incorporated in the agent based model to inform the actual 
travel time of each trip (which agents use in considering new 
travel modes) and changes of traffic density on the road 
network. 

Major components that constitute the agent based model in this 
study are (i) synthetic population, (ii) residential relocation 
choice, (iii) perceived liveability, (iv) travel diaries, (v) traffic 
micro-simulation, and (vi) transport mode choice. These 
components equip the model with unique features that allows it 
to be used as a comprehensive tool for assisting integrated 
travel – land use planning. These components are briefly 
described in Section 2 in order to provide a full picture of the 
model features and capabilities. The focus of this paper 
however will be in reporting the simulation results in regards to 
road traffic and transport demands (Section 3). The paper closes 
with discussions on further developments of the model. 

2. MODEL COMPONENTS 
This section provides an overview of the six main components 
that constitute the agent based model in this study. Details on 
the model architecture and integration of these components are 
given in [3]. 

2.1 Synthetic Population 
The purpose of the synthetic population is to create a valid 
computational representation of the population in the study area 
that matches the distribution of individuals and household as 
per the demographics from census data. The construction of the 
synthetic population involves the creation of a proto-population 
calibrated on socio-demographic information provided by the 
Australian census data (full enumeration). Different to the 
majority of existing algorithms for constructing a synthetic 
population, the algorithm used in this study uses only 
aggregated data of demographic distributions as inputs, i.e. no 
disaggregated records of individuals or households (e.g. a 
survey) are required. The resulting synthetic population is made 
of individuals belonging to specific households and associated 
with each other by household relationship. 

This initial population is evolved according to annual 
increments during the simulation period. Each individual and 
household is susceptible to various demographic (e.g. aging, 
coupling, divorcing, reproducing of individuals) and economic 
changes controlled by conditional probabilities. The consequent 
changes in the structure of households as a result of these 
processes are also captured. Further details of the algorithms for 
the construction and evolution of the synthetic population used 
in this study can be found in [6]. An immigrant population may 
be added to the existent population of the study area at the end 
of each simulation step. 

2.2 Residential Location Choice 
Household relocation modelling is an integral part of both the 
residential and transport planning processes as household 
locations determine demand for community facilities and 
services, including transport network demands. The approach 
used to model residential location choice includes two distinct 

processes: the decision to relocate, and the process of finding a 
new dwelling. A multinomial logit model was used to represent 
the process by which households make decision to relocate. The 
attributes of this model are change in household income, change 
of household configuration (e.g. having a newborn, divorced 
couples, newly wed couples), and the tenure of the household. 
The HILDA data was used to regress the coefficients associated 
to each of these attributes needed in the binomial logit model. 
Further details on the development of the model for triggering 
household relocation can be found in [12]. 

Once a household is selected for relocation, the second decision 
determines where the household will relocate and whether they 
will be renting or buying a dwelling in the target location, if a 
suitable a dwelling is found. This process of finding a new 
dwelling is modelled as a constraint satisfaction process, 
whereby each household will attempt to find a suitable dwelling 
based on three factors, affordability, availability, and 
satisfaction. 

2.3 Perceived liveability 
A significant departure of the current model to other existing 
approaches is the assumption that residential location choice is 
based not only on availability and affordability principles but 
also on the perception that individuals have of the quality of 
their living environment. The perceived liveability component 
uses a semi-empirical model to estimate individual levels of 
attraction to and satisfaction with specific locations. The semi-
empirical model is a statistical weighted linear model calibrated 
on a computer assisted telephone interviewing (CATI) survey 
data collected in the study area. Further details of this semi-
empirical model can be found in [10, 11]. 

2.4 Travel Diaries 
Each individual in the synthetic population is assigned with a 
travel diary which comprises a sequence of trips the person 
makes in a representative day as well as trip attributes such as 
travel mode, trip purpose, departure time, origin and 
destination. Because these details of travel behaviours of the 
population are not completely available in any single source of 
data (for confidentiality reasons), the process of assigning travel 
diaries to individuals comprises two steps. The first step assigns 
a trip sequence each individual makes in a representative day 
using the Household Travel Survey data. Details of each trip in 
this trip sequence include trip purpose, travel mode, and 
departure time. The second step assigns locations to the origin 
and destination of each trip in the trip sequence. 

2.4.1 Assigning Trip Sequences To Synthetic 
Population 
The Household Travel Survey (HTS) data was used to assign 
trip sequences to individuals in the synthetic population. This 
data is the largest and most comprehensive source of 
information on individual patterns for the Sydney Greater 
Metropolitan Area. The data is collected through face to face 
interviews with approximately 3000-3500 households each 
year. Details recorded include information of each trip (e.g. 
departure time, travel time, travel mode, purpose) as well as 
socio demographic attributes of the interviewed household.  

The assignment of trip sequences to the synthetic population 
comprises two steps. The first step deterministically searches in 
HTS data for households that best match the household type, 
the number of children under 15 years old, and the number of 
adults of a synthetic population household. This deterministic 
search gradually relaxes the constraints on exact matching 
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conditions so that the search always returns at least one HTS 
household. The second step randomly selects a HTS household 
from the list of households identified in stage 1 and assigns 
travel diary of individuals in the HTS household to those in the 
synthetic population household. The random selection follows a 
uniform distribution. 

Further details of the algorithms for the assignment of trip 
sequences to the synthetic population can be found in [7]. 

2.4.2 Assigning Locations To Trips In Trip 
Sequences 
Once the trip sequences for all the households in the synthetic 
population are assigned then the following procedure is carried 
out to assign activity locations to each trip in a sequence. This 
procedure had to be followed because the HTS data used for 
this study did not contain activity locations to ensure the 
confidentiality of the data and so alternative arrangements 
needed to be made to ensure that each agent was assigned a 
location of where to go for a particular activity type either 
inside or outside the study area. In the case of activity locations 
outside of the study area, main entry and exit points which acted 
as the origin/destination of trips coming into or going out of the 
study area. These main entry/exit points are located near where 
main entry/exit roads pass the boundary of the study area. 

Attributes of activity locations in the study area that are 
available to this study include the geolocations (i.e. coordinates) 
and the type of the locations. In order to assign specific 
coordinates to origin and/or destination of a trip, an activity 
type must first be determined based on the trip purpose. Based 
on location type and trip mode, a set of coordinates associated 
with this location type is assigned to the destination. Details of 
these two processes are given below. 

 
Figure 1. Flow chart of the assignment of activity types to 

origin and destination of a trip. 

A flow chart of the assignment of activity types to origin and 
destination of a trip is shown in Figure 1. The algorithm 
described in this flow chart applies to all trips of everybody in 
the population. Depending on the trip purpose, further 
constraints are applied to correct the assigned activity type. For 

example, activity types associated with trip purpose 
“Education” are “Child_care_centre”, “Kindergarten”, 
“Education_primary”, “Education_school”, 
“Education_university”. Choosing which type for the trip 
destination depends on the age of the individual making that 
trip. 

 
Figure 2. Flow chart of the assignment of activity locations 

to origin and destination of a trip. 

 
Figure 3. Travel diaries assignment for successive simulated 

years. 

 flow chart for the assignment of coordinates to trip origin and 
destination is shown in Figure 2. The algorithm described in 
this flow chart applies to all trips of everybody in the 
population. Travel destinations are assigned to account for the 
constraints of people in the same household travelling together, 
e.g. destination of a trip of an adult who takes a child to school 
is similar to the destination of a child. The Journey To Work 
data is used to assign work locations to work trips. This dataset 
provides the distribution of trip counts to/from a travel zone 
from/to another travel zone by each travel mode. For non-work 
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trips (e.g. social and recreational trips), the location of trip 
destinations is assigned on a random basis. 

After each individual has been assigned with a travel diary and 
specific locations for their trips, corrections to their travel diary 
may be required to ensure that (i) any children under 15 years 
old always travel (i.e. have the same modes) with an adult in the 
household, and (ii) any two individuals who depart and arrive at 
the same time for the same trip purpose will have the same 
travel mode and destination. Corrections may also be required 
to the trip modes of an individual who drives in some trips of 
his/her travel diary to ensure that a car is used throughout these 
trips. These corrections are particularly needed after individuals 
make their travel mode choice (see Section 2.6) during the 
simulation. This is because the travel mode choice model in 
itself does not have the visibility of the constraints of co-
travelling of individuals in a household nor the connection of 
trips in an individual’s travel diary. 

2.4.3 Updating Travel Diary Of Individuals 
During The Simulation 
Sections 2.4.1 and 2.4.2 describe the assigning of initial travel 
diaries to the synthetic population. Due to changes in the 
synthetic household attributes (e.g. household type, number of 
children under 15, etc) as the population evolves, travel diaries 
may need to be reassigned in subsequent simulation steps to 
these households in the model. Figure 3 shows the process that 
is used to reassign/update travel diaries in households whose 
attributes are different the previous simulation step.  

2.5 Traffic Micro Simulation 
TRANSIMS was chosen as the traffic micro-simulator as, in its 
current iteration, it is a clean, efficient, C++-based (including 
good use of STL) platform that supports an individual (person 
and vehicle) level of modelling, and supports detailed micro-
simulation of traffic to support the requirements of our 
software, including but not limited to: 

 road-by-road and minute-by-minute analysis of traffic 
patterns; and 

 details of what individuals are going where on public 
transport, and analysis of usage (raw, and percentage 
utilisation). 

Normally one would use a process analogous to simulated 
annealing to arrive at the solution; running the router to 
establish initial routes, then finding when vehicles jam, and 
either redirecting them off the street temporarily into a park (if 
the numbers are sufficiently low) or by then re-routing them 
using the router and then running the simulation until numbers 
jammed are sufficiently low. Given the typical travel volumes 
(around 100,000 commuters), and our desire to simulate a 20-
year period, we are forced to run only one typical weekday and 
weekend in simulation per year, and run only one iteration of 
the router. We have compared this with test runs of multiple 
iterations of router and the core micro-simulator of vehicle 
movements, and found that travel times are within 5%; this we 
consider sufficient for our purposes. 

2.6 Transport Mode Choice 
The purpose of the travel mode choice algorithm was to 
accurately describe the decision-making processes of 
individuals travelling on the transport network in the study area, 
thus enabling the prediction of the choice of travel modes of 
individuals in the population. Travel modes considered in this 

study are car driver, car passenger, public transport, taxi, 
bicycle, walk, and other. 

A multinomial logit (MNL) model was developed for this 
purpose. At the heart of the MNL formulation is a linear part-
worth utility function that calculates the utility of each 
alternative travel mode choice. Independent variables for this 
function include the difference of fixed cost and difference of 
variable cost of the selected travel mode with the cheapest 
mode. The variable cost is dependent on the estimated travel 
time, which is the output of the traffic micro-simulation. 
Another independent variable is the individual’s income, acting 
as a proxy for the individual’s perception of value of time. 
Multinomial logit regression was used on the HTS data to 
estimate the utility coefficients vector for the possible travel 
modes. 

3. SIMULATION RESULTS WITH 
REGARDS TO TRANSPORT DEMANDS 
AND ROAD TRAFFIC 
The agent based model described in Section 2 is applied to 
simulate the dynamic interactions between population growth, 
urban relocation choice and transport demands for Randwick - 
Green Square, a metropolitan area in south east of Sydney, 
Australia. This area has a population of approximately 110000 
individuals in around 52000 households that live in private 
dwellings. 

 
Figure 4. Percentage of trips by modes from simulation 

years 2006 and 2011 versus 2006-2011 HTS data. 

 
Figure 5. Percentage of trips by purposes from simulation 

years 2006 and 2011 versus 2006-2011 HTS data. 

The simulation period is from 2006 to 2011. The initial 
synthetic population is constructed using the 2006 census data 
that is available from the Australian Bureau of Statistics. This 
initial synthetic population was validated that it matches the 
demographics of the real population at both individual level and 
household level, and thus is a realistic computational 
representation of the real population in the area [6]. It was also 
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shown that the synthetic population in year 2011 (i.e. after 5 
simulation years) matches the demographics of the population 
in the study area as described in the 2011 census data. This 
affirmed that the algorithm to evolve the population while 
simulating the evolution at individual level can capture the 
dynamics of household structures in the population. 

 
Figure 6. Percentage of population by number of daily trips 
for simulation years 2006 and 2011 versus 2006-2011 HTS 

data. 

Figures 4 and 5 respectively show the percentage of trips by 
each mode and each purpose with respect to the total number of 
trips made by the whole population for year 2006 (initial year) 
and simulation year 2011. Figure 6 compares the percentage of 
individuals in the synthetic population against that in the HTS 
data by the number of trips made daily. The distributions in 
these graphs are in very good agreement with the HTS data for 
the whole Sydney Greater Metropolitan Area. Please note the 
HTS data used for comparisons in Figures 4 to 6 is the 
collective data of years from 2006 to 2011. This is to comply 
with the suggestion that three or more years of data are pooled 
to give reliable estimates of travel at a particular geographical 
level [21]. 

 
Figure 7. Trip counts by purposes over 24 hours of a 

representative day in year 2011. 

Trip counts by purposes over 24 hours of a representative day in 
year 2011 are shown in Figure 7. In this figure, trips go to work 
and go to school both peak at 8.00am to 9.00am. Counts of trips 
go to work however are higher than trips to school at earlier 
hours (6.00am to 8.00am) which reflects early workers. Trips to 
work also have a smaller peak between 1.00pm and 2.00pm to 
reflect trips by people doing afternoon and/or night shifts. Trips 
for shopping, social activities, recreational and personal 

services (i.e. ‘visit’) reach their peak at around 9.00am to 
12.00pm and gradually drop in the afternoon. These 
observations affirm that the model can realistically reproduce 
the patterns of travel demand of the population in the study area 
as well as the change of these patterns as the population 
evolves. 

 
 

 
(a) traffic density from simulation results 

 
 

 
(b) congestion profile from Google Maps 

Figure 8. Traffic density on Anzac Parade near the 
intersection with Rainbow street in the morning peak hour. 

Traffic density (that was outputted from TRANSIMS router) at 
two major intersections along Anzac Parade, the main road in 
the study area, in the morning peak hour (8.00am to 9.00am) 
compared against their congestion profiles from Google Maps 
[20] are shown in Figures 8 and 9. The model is able to 
reproduce the relatively higher northbound traffic density on the 
part of Anzac Parade north of the intersection with Rainbow 
street and the part of Anzac Parade north of the intersection 
with Maroubra Road. The southbound traffic on Anzac Parade 
at these two locations however is relatively less congested 
compared to the northbound. These results are in agreement 
with observations of traffic profiles from Google Maps. 
Qualitative trends of traffic counts at major cross sections from 
simulation results were also analysed and in good agreement 
with survey data in the study area. 

northbound southbound 

northbound southbound 
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Such agreement however does not occur on all parts of the road 
network. This could be attributed to the randomness in the 
assignment of activity locations to origin and destination of 
trips in the travel diaries of the population (see Figure 2). While 
the assignment of destination locations of trips related to work 
is constrained by the Journey To Work data, the randomness in 
assigning destination locations to trips of other purposes does 
not guarantee a realistic representation of traffic profiles in the 
model. Note that non-work trips have a significant proportion in 
the total number of trips made by the population in the study 
area (see Figures 5 and 7). 

 
 

 
(a) traffic density from simulation results 

 
 

 
(b) congestion profile from Google Maps 

Figure 9. Traffic density on Anzac Parade near the 
intersection with Maroubra Road in the morning peak 

hour. 

4. CONCLUSIONS 
This paper has presented an agent based model for the 
simulation of transport demands and land use for an urban area 
in south east Sydney, Australia. Being comprised of six major 
components (synthetic population, residential location choice, 
perceived liveability, travel diary assignment, traffic micro-
simulator, and transport mode choice) the model is able to 
capture the decision making of the population with respect to 
relocation and transport, and thus is able to explicitly simulate 
the dynamic interactions between population growth, transport 

demands, and urban land use. This is a unique feature that has 
not been found in many other agent based models for urban 
transport and urban planning. Thanks to this feature, the model 
can be used for exploring long-term consequences of various 
transport and land use planning scenarios. 

Various aspects of the simulation results on transport demands 
of the study area were presented, particularly the percentage of 
trips by each mode and each purpose with respect to the total 
number of trips made by the whole population, percentage of 
population by number of daily trips and the distribution of trips 
by each purpose over 24 hours of a typical day. Being in good 
agreement with the corresponding survey data, these results 
affirm that the model’s capability to realistically reproduce 
travel demand of an urban area and any changes to this travel 
demand as the population evolves. This is because individuals 
in the model are associated with each other by their household 
relationship, which helps define the interdependencies of their 
travel diary and constrains their mode choice. 

Traffic density (from TRANSIMS router) at various locations 
along the main road in the study area also matches with the 
observations of traffic congestion on the same road from 
Google Maps. Mismatches however occur on other (smaller) 
roads in the study area. This could be attributed to two factors. 
The first is the lack of a survey data on the origin and 
destination of non-work trips. The randomness in assigning a 
location to the destinations of these trips obviously cannot 
guarantee a realistic representation of traffic demands in the 
simulation model. The second factor is the limited ability of the 
TRANSIMS router to realistically reproduce the reasoning of a 
person in choosing a possible route for the trips the person 
makes, including dynamic routing to avoid heavy traffic in real 
time. 
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ABSTRACT
Increased stress, fuel consumption, air pollution, accidents
and delays are some of the consequences of traffic congestion
usually incurring in tremendous economic impacts, which
society aims to remedy in order to leverage a sustainable
development. Recently, unconventional means for modeling
and controlling such complex traffic systems relying on multi-
agent systems have arisen. This paper contributes to the
understanding of such complex and highly dynamic systems
by proposing an open-source tool-chain to implement multi-
agent-based solutions in traffic and transportation. The
proposed approach relies on two very popular tools in both
domains, with focus on traffic light control. This tool-chain
consists in combining JADE (Java Agent DEvelopment
Framework), for the implementation of multi-agent systems,
with SUMO (Simulation of Urban MObility), for the micro-
scopic simulation of traffic interactions. TraSMAPI (Traffic
Simulation Manager Application Programming Interface) is
used to combine JADE and SUMO allowing communication
between them. A demonstration of the concept is presented
to illustrate the main features of this tool-chain, using Q-
Learning as the reinforcement learning method for each traffic
light agent in a simulated network. Results demonstrate the
feasibility of the proposed framework as a practical means to
experiment with different agent-based designs of intelligent
transportation solutions.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous; I.6 [Simulation
and Modeling]: Miscellaneous

General Terms
Algorithms, Design, Experimentation, Verification

Keywords
MAS, traffic light, JADE, SUMO, TraSMAPI, Q-learning

1. INTRODUCTION
Nowadays urban centers face the daily problem of traffic

congestion, which in addition to the obvious confusion can

create also other negative consequences. Increased stress,
fuel consumption, air pollution, accidents and delays are
some of these consequences, which society aims to remedy in
order to leverage a sustainable development, while mitigating
tremendous economic impacts.

Solutions to this problem have evolved over time, more
in an immediate response perspective than on a long-term
resolution perspective. Initially, the approach was based on
the construction of alternative routes with increased capacity.
However, available money and territorial area ceased to exist
for continuing implementation of this sort of solution. In
parallel, traffic lights and roundabouts were introduced but
the urban centers continued growth now are demanding more
advanced and efficient alternative measures.

The aim of the work described in this paper was to use
a tool-chain that allows us to implement a multi-agent sys-
tem (MAS) for traffic light control. Therefore, a multi-
agent system approach was used to answer the daily problem
of traffic congestion. This tool-chain consisted in integrat-
ing JADE (Java Agent DEvelopment Framework) for con-
trolling the multi-agent system to SUMO (Simulation of
Urban MObility) for traffic simulation. TraSMAPI (Traffic
Simulation Manager Application Programming Interface)
was the middleware combining JADE and SUMO and allow-
ing communication between both environments. For the sake
of illustration, the implemented agents’ learning method was
Q-Learning.

As a motivation, just a few simulation tools truly sup-
port the concept of agents and multi-agent systems in traffic
simulation; MATSim-T [3, 4] and ITSUMO [9, 6] are good ex-
amples to be mentioned. However, no standard of wide reach
for the implementation of such tools actually exists. Indeed,
alternative approaches would require either general purpose
MAS-based simulators to be adapted to the specific domain
of traffic and transportation, or the other way around with
the adaptation of traffic simulators to be adapted so as to
support the MAS-based models. With our approach, we ex-
pect to benefit from both worlds on an integrated basis. Also,
it is important to notice that although SUMO and ITSUMO
are both open-source microscopic simulators and have a quite
similar acronym, they are no related applications. ITSUMO
is a Cellular-Automata-based simulator, whereas SUMO uses
a continuous representation of space on road segments. Be-
sides, ITSUMO explicitly consider the metaphor of agents,
whereas SUMO can be considered a traditional microscopic
simulator, where agents are not explicitly implemented.

The expected contribution of this work, rather than imple-
menting a new agent-based simulator from scratch, adapting
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or extending existing ones, is to devise an open-source tool-
chain to implement MAS-T (MAS in traffic and transporta-
tion) on the basis of two very popular tools in both domains.
On the one hand, JADE supports the implementation of
any MAS solution and, on the other hand, SUMO supports
an appropriate representation of the traffic environment in
which agents inhabit and perform their tasks.

This paper will start to deeply describe the tools. The
conceived model is detailed and instantiated in the proposed
tool-chain. An experimental set-up is used to illustrate the
proposed approach, followed by the discussion of preliminary
results. After discussion on related works, conclusions are
drawn as well as are further developments suggested.

2. A MAS-BASED TRAFFIC SIMULATION
TOOL-CHAIN

The MAS-based traffic simulation tool-chain used consisted
in three main tools: JADE, SUMO and TraSMAPI.

A multi-agent system based approach seems to be the
appropriate way to represent the different traffic lights in a
network. Consequently, it is necessary that a multi-agent
system framework take care of the different agent behaviours,
as it is the case in JADE.

Next, a microscopic simulator is needed to take care of the
traffic road dynamics, such as vehicles decisions. It should
be noted that although it is necessary to have vehicles in
order to test traffic light control, these vehicles do not need
to be modeled as agents. It would be very computationally
expensive to simulate a huge quantity of vehicles, each one
with driver’s decision-making and other cognitive aspects
and details. SUMO was the microscopic simulator chosen.

Finally, as traffic lights are considered to be agents, it
is necessary they communicate with the simulator. This is
important so as to allow their traffic lights in the simulation
to have the semaphore plans always updated and agents to
perceive the network dynamics. This communication was
made through TraSMAPI, consisting of an integration API
implemented in Java.

2.1 JADE
JADE is a framework completely developed in Java. It

simplifies the implementation of multi-agent systems through
a middleware that complies with the FIPA1 specifications
and through a set of graphical tools that supports the de-
bugging and deployment phases. The agent platform can
be distributed across machines and the configuration can be
controlled via a remote GUI [19]. The version used in this
work was 4.3.0, released on March 2013.

One advantage of using JADE to implement MAS is its
ability to allow run-time visualisation and control of the
interactions among agents in the application. As relevant
features for this work, some can be pointed that are not
directly connected to agents, that is, are independent of
the applications: message transportation, codification and
parsing of messages or lifetime of an agent, for instance.

2.2 SUMO
SUMO is an open-source program (licenced under GPL2)

1Foundation of Intelligent Physical Agents, an organization
that promotes agent-based technology and the interoperabil-
ity of its standards with other technologies
2GNU General Public License, a free, copyleft license for

for traffic simulation. Its simulation model is microscopic,
that is, each vehicle is explicitly modeled, has its own route
and moves individually over the network. It is mainly de-
veloped by Institute of Transportation Systems, located at
German Aerospace Center [12]. The version used in this
work was 0.18.0, released on August 2013.

Among other features, it allows the existence of differ-
ent types of vehicles, roads with several lanes, traffic lights,
graphical interface to view the network and the entities that
are being simulated, and interoperability with other applica-
tions at run-time through an API called TraCI. Moreover,
the tool is considered to be fast, still allowing a version with-
out a graphical interface where the simulation is accelerated
putting aside visual concerns and overheads[12].

In Figure 1 it is possible to visualize the SUMO’s graphical
interface with a running simulation. It is possible to point
out almost all specified features: vehicles stopped at the
traffic light as well as a long vehicle entering an intersection.

Figure 1: SUMO working

This tool was crucial in this work! First, it allows loading
different maps (described in XML files) in order to test vari-
ous scenarios with vehicles and traffic lights. Then, with the
simulation itself there is no need to waste time implementing
the dynamics of many vehicles and traffic lights, starting soon
with the evaluation of algorithms. Finally, interoperability
with other applications allows that each agent can be bound
to an entity in SUMO, so that changes in the dynamics of
traffic lights, for instance, can be visually seen in the SUMO’s
graphic interface.

2.3 TraSMAPI
TraSMAPI can be seen as a generic API for microscopic

traffic that allows real-time communication between agents
of urban traffic management (such as vehicles and traffic
signals) and the environment created by various simulators.
This tool was developed in LIACC (Artificial Intelligence and
Computer Science Laboratory), University of Porto, having
already been tested with two different simulators, including
SUMO [20].

This API offers a higher abstraction level than most of mi-
croscopic traffic simulators in such a way that the solution is
independent from the microscopic simulator to use. Initially,
this tool also aimed to gather relevant metrics/statistics and
offer an integrated framework for developing multi-agent
systems, as shown in Figure 2 [21].

As it can be seen, there were three main modules: a com-
munication module with possibility of various microscopic

software and other kinds of works
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Figure 2: TraSMAPI’s initial architecture

simulators, the module generating statistics and the module
for the MAS management. Presently, only the communica-
tion module is functional and this is the module that interests
to the scope of the presented work.

2.4 The tool-chain
In order to achieve a tool-chain with the previous described

tools, it was necessary to extend the TraSMAPI API, enabling
to build an abstraction over a SUMO’s traffic light entity.
Thus, it was necessary to implement the communication
protocol regarding the methods of traffic light for value
retrieval and state change, in TraCI [23].

Figure 3: Communication between JADE and
SUMO using TraSMAPI for a traffic light

The architecture described in Figure 3 shows how it is
possible the existence of one or more traffic light agents.
Each traffic light agent has a tie to the respective traffic
light to be modeled in SUMO. This tie is supported by the
TraSMAPI communication module that interacts with the
SUMO API, TraCI.

3. EXPERIMENTAL SETUP
A simple scenario for the sake of illustration is now de-

scribed. Although the following scenario is simple and not
intended to deeply discuss the appropriateness of implement-
ing traffic control through agents, it illustrates well how our
integrated framework could be practically used in this sort
of experiments.

3.1 Concepts
For the purpose of this work, a traffic light is defined as an

intersection that has a semaphore plan, which is characterized
by a sequence of phases. Each phase has a duration and
a color scheme (green, yellow, flashing yellow and/or red),
whose values correspond to every possible maneuver at the
intersection. The execution of the phases sequence is called
a cycle and has a period equal to the sum of the durations
of the phases.

In Figure 4 the intersection has six possible maneuvers,
indicated by the arrows, which means that each phase has
to specify a color for each maneuver (M1, ..., M6). The
sequence of phases is guided by the phase number, and after
the end of the sixth phase a 80 cycle duration is completed,
following again phase 1. For each maneuver the traffic light
may show the green color with symbol G, yellow with symbol
y, flashing yellow with symbol g and red with symbol r.

Figure 4: Example of a semaphore plan with illus-
trative image for phase 5

3.2 Scenario Definition
As a demonstration of the concept, it was used a grid

(Manhattan-like) map (Figure 5) in order to make some
experiments for traffic light control. A grid map is relatively
simple to implement and where it is fairly possible to define
consistent semaphore plans. The Q-learning algorithm was
chosen as the learning method for the traffic light agents.

Figure 5: The grid map where simulation took place

Thus, these experiments consisted in performing four sim-
ulations: one with traffic lights with fixed semaphore plans,
one with traffic lights with fixed semaphore plans but with
different durations for distinct day periods, another with traf-
fic lights with Q-Learning taking into account the duration
of the phases and another with traffic lights with Q-Learning
taking into account the duration of the phase and the period
of the day. The metrics that will be used to evaluate the
results are described in Section 3.3. Therefore, to be a basis
for comparison, each of the simulations had the same back-
ground: the same vehicles leaving at the same time, from
the same place and with the same route.
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Theoretical hour Starting step Traffic
00h00 0 Low
07h30 150 000 High
09h00 180 000 Medium
18h00 360 000 High
20h00 400 000 Low

Table 1: Traffic distribution during the day

As SUMO’s time unit is step (step of execution), and as
each step can last more or less a second, it was necessary to
make a correlation between number of steps and the time
in simulation. This correlation is necessary to implement
time compression and allow for an entire day to be simulated
correctly and much quicker than in the real-life duration.
Thus, the approach taken was that 20000 steps correspond
to 1 theoretical simulation hour. There are three traffic
scenarios throughout the day: low traffic, medium traffic with
a predominance of horizontal flows of vehicles, and heavy
traffic. The distribution of traffic is performed according to
Table 1.

A manual approach was carried out for the definition of
the green splitting for the phases in the simulations where
Q-Learning was not used. In the specific case of the traffic
lights with fixed semaphore plans but with different durations
for distinct day periods, in the low traffic period faster green
durations were used in opposition to the high traffic period
where long green durations were used.

Each simulation corresponded to a 4-day simulation. This
way, at the end of each simulation, that is, when all vehicles
arrived at their destination, metrics were generated.

The tool-chain takes some time to add all desired vehicles
at startup. This way, simulation time should not be such that
would make the startup take longer than necessary. However,
simulation time should be enough so traffic lights have time
to learn. 4-day simulation seemed to be the best way for
balancing these issues.

It is also important to note that the insertion of network
traffic was not made in a distributed manner again because
of the slowness that would result with the startup of the tool-
chain. Thus, two approaches have been considered for the
four simulations: on the one hand, insertions with intervals of
7000 steps, and on the other hand, insertions with intervals
of 10000 steps. In each of these intervals, the quantity of
vehicles to add would depend on the period of day that the
simulation was on. So, in reality, there were 8 simulations.

3.3 A Q-Learning traffic control
It is important to be aware that the state representation

has influence in the Q-Learning performance, in other words,
it is only possible to learn something if it is relevant to the
problem. In this sense, it is intended to use two relevant vari-
ables: phase durations and period of the day. It is considered
that phases initially with duration under 20 seconds will not
suffer any variation and the other phases will have durations
between 20 and 60 seconds, with a granularity of 5 seconds.
Assuming that could exist two or three phases with variable
durations for each semaphore plan, there are a total of 81
or 729 duration combinations, respectively. Possible actions
are decrease, maintain or increase (-5, 0 or +5 seconds) each
variable duration, which results in a Q-Table with 243 or
2187 pairs. Considering the period of the day these numbers

would increase.
The reward function consists of two portions: the own

reward multiplied by 0, 5 and the weighted average (concern-
ing distance of roads) of neighboring traffic lights rewards
multiplied by 0, 5. These rewards are calculated using the
average of vehicles in the vicinity of an intersection, during
a complete cycle. In what concerns exploration, it is used a
0-greedy strategy. The learning rate was 50% as well as was
the discount factor.

In order to evaluate the learning process, the following
metrics will be used:

• Travel time and average waiting time in queues, that
allow to check the individual performance of each vehi-
cle;

• Standard deviations of travel times and of average
waiting times in queues, that allow to check the network
traffic homogeneity, in other words to check whether
vehicles will have a similar experience both in travel
time and waiting time in queues;

• Average of travel times and of average waiting times in
queues, that allows to check the global network traffic
performance.

3.4 A multi-agent system for traffic control
System could be implemented using two agent models: an

agent for each traffic light with a super coordinator agent, or
an agent for each traffic light with distributed coordination.
First model allows a greater process synchronization between
agents, has a single point of failure for the entire system and
has a computation volume highly concentrated in the coordi-
nator. The second model can hardly obtain synchronization
but yet in the event of a failure, this is not spread to the
entire system, and computation is homogeneous.

Therefore, system will be implemented using the second
model in which agents are traffic lights. The architecture
of each agent displayed in Figure 6 is based on a learning
agent architecture [16, p. 54-57] but specified to the Q-
Learning process. In this Figure, the presented behaviour
does not include the initial phase in which the Q-Table is
initialized and where each agent finds the neighbors (in Figure
6 represented as Agent n).

There exist two types of communication between agents:
reward requests and answers to reward requests. The former
is implemented using the performative QUERY REF with
content ”reward”, whereas the latter uses the performative
INFORM REF with the reward itself in the content.

Figure 7 is described a possible situation between agents,
in which Agent2 is a neighbor of Agent1 and Agent3, and
Agent1 and Agent3 are not neighbors.

4. PRELIMINARY RESULTS AND DISCUS-
SION

Figures 8 and 9 show, for each vehicle, the average waiting
time in queues.

For each vehicle, with intervals of 7000 steps there are
greater peaks in the average waiting time in queues compared
to intervals of 10000 steps. This is explained as the network
gets easily saturated with fewer steps and vehicles wait longer
in queues. Another fact is that, in individual terms, the
average waiting time in queues does not vary a considerably
with the types of semaphore plan.
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Figure 6: Traffic light agent architecture and behaviour

Figure 8: The average waiting time in queues with intervals of 10000 steps

Figure 9: The average waiting time in queues with intervals of 7000 steps
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Figure 7: Interaction example between agents

In what concerns the travel time for each vehicle, once
again intervals of 7000 steps produce greater peaks, in other
words, easily a vehicle takes longer to travel the same path. It
is curious to verify that with a changing of the step intervals
a vehicle can take longer or shorter in different plans. In
other words, unlike the previous metric, there is not a better
semaphore plan for the majority of the vehicles, and so a
semaphore plan can give better individual results for some
vehicles, but not for all vehicles.

Figures 10 and 11 present metrics to a more global evalua-
tion of the explored solutions. It is called Q-Learning A to
the plan taking into account the duration of the phases and
Q-Learning B to the plan taking into account the duration
of the phases and period of the day.

Figure 10: Average of travel times

In these Figures a clear difference between the fixed and
semi-fixed plan is shown: while the fixed plan presents the
worst results, semi-fixed plans presents the best results, even
compared to the Q-Learning plans. Even so, the Q-Learning
B plan has better results than Q-Learning A, as it was
expected.

However, what matters the most for the driver is the total
travel time. Looking at the Figures, the differences between
plans are not big, mainly for the plans with intervals of 7000

Figure 11: Average of averages waiting time in
queues

steps. Even so, Q-Learning B plan has slightly better results.
The peculiar result that semi-fixed plans induces lower

waiting times in queues but longer travel times than Q-
Learning B may be explained. A simple example where this
makes sense is that while in Q-Learning B a vehicle can pass
through a lot of green traffic lights (inducing lower travel
times), in the few traffic lights that it has to wait, it waits
a lot of time (inducing a greater average waiting time in
queues). In the semi-fixed plan a vehicle may have to wait,
in average, shorter in queues but as it stops in more traffic
lights than in Q-Learning B, it takes longer to travel through.

Finally, Figures 12 and 13 show the results of standard
deviations.

Figure 12: Standard deviation of travel time

Figure 13: Standard deviation of average waiting
time in queues
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For the averages of waiting times in queues, the semi-fixed
plan has the best network traffic homogeneity for intervals
of 7000 steps and the second best for intervals of 10000 steps.
Nevertheless, in general terms Q-Learning B can obtain more
network traffic homogeneity.

Passing to the total travel times, Q-Learning B can widely
overcome the other plans, obtaining greater network traffic
homogeneity, both for intervals of 7000 and 10000 steps.
The network traffic homogeneity is an important factor for
a driver, who intends to know that when he goes to his
destination there is not a probability to take longer than it
was expected.

5. RELATED WORKS
The specific case of traffic lights is one of the areas where

much has been researched for new solutions, from the design
of intersections [13] (including physical layout and semaphore
plans), to the definition of semaphore plans through statis-
tical analysis. Current solutions try to answer the highly
dynamic system [8, p. 343] using coordinated control. Sev-
eral methodologies have been used such as genetic algorithms
[18], fuzzy logic [2] and reinforcement learning [1].

To date, there are not many solutions for traffic that make
full use of the intelligent agent concept. However, the multi-
agent system approach has become recognized as a convenient
approach for modelling and simulating complex systems [15].
Also, it has grown enormously not only applied to traffic but
also to transportation in general terms [7].

In the last decade some microscopic simulators have been
developed, such as MITSIM, Paramics, Aimsun, CORSIM
and VisSim. However, none of these is strictly defined as
agent-based simulation systems, even though they model
vehicles in an object-oriented manner. Just a few simulation
tools truly support the concept of agents and multi-agent
systems in traffic simulation; MATSim-T [3, 4] and ITSUMO
[9, 6] are good examples to be mentioned.

Regarding this simulation tools some examples of multi-
agent system approaches for traffic lights control can be seen
in [11], [5], [14] and [10]. Simulators used in these works were
Aimsun, ITSUMO, VisSim and ITSUMO, respectively.

With MAS being recognized as a convenient approach,
there must be a sufficiently general way to couple this ap-
proach to such a huge quantity of microscopic simulators
that exist now. The platform that integrates SUMO and
JADE consists of an API intended to allow interoperability
among simulators. The platform, coined TraSMAPI, is suf-
ficiently general to allow other simulators to interact with
MAS frameworks such JADE. A previous paper [20] reports
on an experiment integrating ITSUMO and SUMO under
TraSMAPI, thus demonstrating such an ability. In another
study [22], external traffic controller agents operate over
Aimsun-simulated scenarios through TraSMAPI. In this spe-
cific work, we illustrate how non-agent-based simulators can
be extended with TraSMAPI to support MAS-T assessment.
There are certainly other options to simulate agent-based
traffic and transportation, such as MATSim. Although such
tools are open-source then allowing full customisation, the
use of JADE over a traditional microscopic simulation tool
is expected to promote greater flexibility in terms of agent
architectures that can be implemented.

In respect to the described tool-chain, a similar approach
has already been proposed. In [17] it is possible to see the
tool-chain JADE+TraSMAPI+SUMO. However, the goal of

this work was focused on the vehicles itself instead of traffic
lights.

6. CONCLUSIONS
This paper explores the use of a specific tool-chain for

the implementation of intelligent traffic light control. At
the end, we have a tool that allows us to implement and
test real MAS-based solutions in the domain of traffic and
transportation, using commodity computers and open-source
tools of wide reach. Q-Learning was used as the reinforcement
learning method to illustrate the implementation of traffic
light agents. The tool-chain resulting from the integration of
JADE and SUMO through TraSMAPI is the main expected
contribution of this paper.

Nonetheless, many improvements can be identified for fu-
ture work. This paper did not analyse other forms for traffic
control. For example, there are solutions based on the sim-
ple statistical analysis of traffic information and posterior
adjustment according to such analytical procedures. This
kind of solution can contrast with others as it can be highly
dynamic and therefore can be applied to very specific scenar-
ios. Another possible solution is the installation of sensors in
each traffic light that, on a reactive way, can simply respond
according to the number of waiting vehicles in the queue,
needing neither great computation power nor the analysis of
the traffic network, totally or partially.

The tool-chain itself could be improved in some different
possible ways, including scalability, robustness, and efficiency.
Firstly, the increase of performance in information retrieval
by decreasing time in communication between the agent and
the simulator. SUMO, that is still in its very young stage,
proved to be much slower than desired with a larger number
of vehicles and constant information retrieval. Certainly this
aspect will be improved in next versions of SUMO, but it
is necessary to analyse who is to blame: Is TraCI too much
slow? is TraSMAPI implemented well in what concerns
performance issues? Dduring simulations is the number of
generated requests to TraCI greater than necessary? and
so forth! On other hand, for the real simulated system
implementation it would be necessary to develop a distributed
system where each agent was executed in each machine.

In this specific study we did not use JADE ability to dis-
tribute agents over a computer network, as our main objective
is to demonstrate how JADE and SUMO can be integrated
through TraSMAPI. Nonetheless, larger networks will cer-
tainly require more robust computational power, which can
be achieved through an appropriate distribution of computa-
tion across a computer network. The traffic network itself
could also be improved: a more realistic map for simulation
can give more relevant results. Maybe the multi-agent system
used could not be the best for the proposed approach. An
analysis of the best tool to use is certainly imperative.

We intend to use the proposed framework to further in-
vestigate traffic control strategies through more robust and
complex signal agents. Contrary to the manual approach
adopted to set up semaphore plans, tools such as Transit can
be used to assist a more coherent definition of phases at each
junction of the network. Finally, in terms of general results,
it seems that Q-Learning taking into account the duration of
the phases and the period of the day obtains better general
results, even if they are not very significant. Nevertheless,
it is necessary to perform these experiments in more real
settings, not only in what concerns the network, but also in
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what concerns simulation. So, it would be possible to better
conclude whether the Q-Learning implementation in traffic
networks is an added value not only for drivers, but also for
the system as a whole.
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ABSTRACT
These last years have seen the multiplication of traffic agent-
based frameworks (MATSim, SUMO...). If these frame-
works are well-fitted for the study of normal traffic con-
ditions, it is often complex to adapt them - in particular
for non-computer scientists - for more specific application
contexts such as the study of impacts of uncommon events
(e.g. car accidents, technological hazardsĚ). In this paper,
we present a new open-source (GPL) tool, integrated into
the GAMA modeling and simulation platform, allowing to
easily define new microscopic traffic simulations, easily tun-
able, with a detailed representation of the driver operational
behaviors. In particular, it allows to take into account the
road infrastructures and traffic signals, the change of lanes of
the drivers and their respects of norms. Moreover, the tool
allows to run simulations at city level with tens of thou-
sands of driver agents. We illustrate the use of this plug-in
through an example for the traffic simulation of the Rouen
city (France).

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
gence

General Terms
Design

Keywords
Agent-based Modeling, Traffic Simulation, GAMA Platform

1. INTRODUCTION
Traffic simulations have proved their interests for urban

planners. Many models have been developed these last years.
These models are often grouped according to their levels
of representation: macroscopic [9], mesoscopic [17], micro-
scopic [12] and nanoscopic [4].

A modeling approach that is particularly well-fitted for
micro-simulation is the agent-based modeling. It allows to
consider the heterogeneity of the driver behaviors and to
take into account the global impact of local processes. This

modeling approach is in particular adapted to the study, at
fine scale (spatial and temporal), of the impacts of uncom-
mon events such as car accidents or technological hazards
(see for example [16]). In this context, being able to simu-
late the traffic in a realistic way while taking into account
the road infrastructure (crossing, traffic signals...), the prop-
erties of the cars (length, max speed...) and the personality
of the drivers (tendency to respect the norms) is mandatory.

Even if there are nowadays many frameworks dedicated to
the development of agent-based traffic models, many models
are still developed from scratch or with a generic platform
(e.g. [6, 3, 16]). Indeed, if the existing frameworks are most
of the time well-fitted to the simulation of normal traffic
conditions, they cannot be easily tuned by domain experts
that are often not computer scientists.

In this paper, we present a new plug-in integrated in the
open-source GAMA modeling and simulation platform [5]
dedicated to the development of fine scale traffic simula-
tions. GAMA provides modelers - which are not, most of
the time, computer scientists - with tools to develop highly
complex models. In particular, it offers a complete model-
ing language (GAML: GAma Modeling Language) and an
integrated development environment that allows modelers
to quickly and easily build models. Indeed, the GAML lan-
guage is as simple to use and to understand as the Netlogo
modeling language [15] and do not requires high level pro-
gramming skills. The plug-in developed allows GAMA user
to easily define traffic simulation at fine scale, with a detailed
representation of the driver operational behaviors.

The paper is organized as follows: Section 2 presents the
related works, in particular the existing agent-based traffic
simulators and frameworks. Section 3 is dedicated to the
presentation of the driving GAMA plug-in. Section 4 gives
an example of a model developed with the plug-in. At last,
Section 5 concludes and presents some perspectives.

2. RELATED WORKS
Many open source traffic simulation frameworks have been

developed these last years.
One of the most famous is MATSim [2] (Multi Agent

Transport Simulation Toolkit). MATSim is an open-source
(GPL) Java application that consists of several modules
which can be combined. MATSim proposes many advance
features dedicated to traffic simulations that can be enrich
by users through the definition of new modules in JAVA.

Another famous open-source framework is SUMO [10].
SUMO is a suite of applications which help modelers to pre-
pare and to perform traffic simulations. Like MATSim, it

Proceedings of 8th International Workshop on Agents in Traffic and Transportation ATT 2014

16



proposes many advance features dedicated to traffic simula-
tions that can be enrich using C++.

AgentPolis [7] is another open source framework dedi-
cated to traffic simulations. In comparison to the two pre-
viously cited frameworks, AgentPolis adopts a fully agent-
based modeling approach. Drivers are represented as au-
tonomous agents with asynchronous control modules and
the ability to interact freely with the environment and other
agents. AgentPolis is implemented in JAVA and can be en-
rich using the JAVA programming language.

These three frameworks are powerful and propose many
advance features. However, for modelers without high level
programming skills, adapting these platforms to specific ap-
plication contexts is out of reach as they require to write
code in JAVA or C++.

Concerning the generic modeling and simulation platforms,
only few propose tools that can be used to develop traffic
simulations. One of them is Repast Symphony [13] that
proposes interesting features concerning GIS loading and
graphs. However, using this platform to develop complex
models require to write code in JAVA. Note that for simple
models, modelers can use the Relogo modeling language.

The GAMA platform [5] provides as well different features
that can be used by modelers to develop traffic models. In
particular, GAMA allows to simply load GIS data (shape
files, OSM data...), to define graphs from polyline geome-
tries, to compute shortest paths and to move agents on a
polyline networks. If these features are well-suited for the
development of traffic simulations at large time scale (see
for example the MIRO project [3] - time scale: 10 minutes
per step), they do not allow to simply account the driver
behaviors at fine scale: his/her change of lanes, the effect of
traffic signals...

In this context, we have developed a new driving plug-in
for the GAMA platform. The goal is to offer to modelers a
tool that is at the same time easy to use for all application
contexts and that allows to build realist traffic simulations.

3. DRIVING GAMA PLUG-IN

3.1 Presentation of the plug-in
The developed tool is integrated in the GAMA platform

as a plug-in. It provides modelers with new GAML instruc-
tions allowing to support the definition of traffic simulation.
GAML is an agent-oriented language, in which modelers de-
fine species of agents, i.e. archetype of agents, their charac-
teristics (variables), behaviors and aspects. The behaviors
of agents are defined through actions and reflexes. An action
is a block of instructions executed when called. A reflex is a
block of instructions executed at each simulation step when
its optional attached condition is true. An aspect represents
how an agent can be displayed. The richness of GAML
comes from the numerous optimized operators it integrates.
In particular, GAMA provides modelers with a native in-
tegration of GIS data and allows to easily load shapefiles,
OSM data and to use databases. It integrates as well many
graph operators.

Concerning our tool, we chose to represent all the road
infrastructures (road, traffic signalsĚ) as agents. The main
interest of this is to give the modelers the possibility to sim-
ply add dynamics to these infrastructures: e.g. to add a
deterioration dynamic to roads.

Our tool takes the form of three GAMA skills. A skill

Figure 1: Roads and nodes

is a built-in module that provides a set of related built-in
variables and built-in actions (programmed in JAVA) to the
species of agents that declare them. In particular, we define
3 new skills:

• Advanced driving skill : dedicated to the definition of
the driver species. It provides the driver agents with
variables and actions allowing to move an agent on a
graph network and to tune its behavior.

• Road skill : dedicated to the definition of roads. It
provides the road agents with variables and actions
allowing to registers agents on the road.

• RoadNode Skill : dedicated to the definition of node.
It provides the node agents with variables allowing to
take into account the intersection of roads and the traf-
fic signals.

3.2 Structure of the network: road and roadNode
skills

A key issue for our tool is to be versatile enough to be
usable with most of classic road GIS data, in particular OSM
data. We choose then to use a classic format for the roads
and nodes (See Figure 1). Each road is a polyline composed
of road sections (segments). Each road has a target node
and a source node. Each node knows all its input and output
roads. A road is considered as directed. For bidirectional
roads, 2 roads have to be defined corresponding to both
directions. Each road will be the linked road of the other.
Note that for some GIS data, only one road is defined for
bidirectional roads, and the nodes are not explicitly defined.
In this case, it is very easy, using the GAML language, to
create the reverse roads and the corresponding nodes (it only
requires few lines of GAML).

A lane can be composed of several lanes (Figure 2) and the
vehicles will be able to change at any time its lane. Another
property of the road that will be taken into account is the
maximal authorized speed on it. Note that even if the user
of the plug-in has no information about these values for some
of the roads (the OSM data are often incomplete), it is very
easy using the GAML language to fill the missing value by
a default value. It is also possible to change these values
dynamically during the simulation (for example, to take into
account that after an accident, a lane of a road is closed or
that the speed of a road is decreased by the authorities).

The road skill provides the road agents with several vari-
ables that will define the road properties:

• lanes: integer, number of lanes.
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Figure 2: Roads and lanes

• maxspeed : float point value; maximal authorized speed
on the road.

• linked road : road agent; reverse road (if there is one).

• source node: node agent; source node of the road.

• target node: node agent; target node of the road.

It provides as well the road agents with one read only
variable:

• agents on: list of list (of driver agents); for each lane,
the list of driver agents on the road.

The road skill provides the road agents with several vari-
ables that will define the road properties:

• roads in: list of road agents; the list of road agents
that have this node for target node.

• roads out : list of road agents; the list of road agents
that have this node for source node.

• stop: list of list of road agents; list of stop signals, and
for each stop signal, the list of concerned roads.

It provides as well the road agents with one read only
variable:

• block : dictionary (map): key: driver agent, value: list
of road agents; the list of driver agents blocking the
node, and for each agent, the list of concerned roads.

3.3 Advanced driving skill
Concerning the driver agents, we propose a driving model

based on the one proposed by [16]. In the model proposed by
[16], each driver agent has a planned trajectory that consists
in a succession of edges. When the driver agent enters a
new edge, it first chooses its lane according to the traffic
density, with a bias for the rightmost lane. The movement
on an edge is inspired by the Intelligent Driver Model [8]. A
difference with our driving model is that in our model the
drivers have the possibility to change their lane at any time
(and not only when entering a new edge). In addition, we
have defined more variables for the driver agents in order to
give more possibilities for the modelers to tune the driver
behavior.

The advanced driving skill provides the driver agents with
several variables that will define the car properties and the
personality of the driver:

• final target : point; final location that the agent wants
to reach (its goal).

• vehicle length: float point value; length of the vehicle.

• max acceleration: float point value; maximal accelera-
tion of the vehicle.

• max speed : float point value; maximal speed of the
vehicle.

• right side driving : boolean; do drivers drive on the
right side of the road?

• speed coef : float point value; coefficient that defines if
the driver will try to drive above or below the speed
limits.

• security distance coeff : float point value; coefficient
for the security distance. The security distance will
depend on the driver speed and on this coefficient.

• proba lane change up: float point value; probability to
change lane to a upper lane if necessary (and if possi-
ble).

• proba lane change down: float point value; probabil-
ity to change lane to a lower lane if necessary (and if
possible).

• proba use linked road : float point value; probability to
take the reverse road if necessary (if there is a reverse
road).

• proba respect priorities: float point value; probability
to respect left/right (according to the driving side) pri-
ority at intersections.

• proba respect stops: list of float point values; probabil-
ities to respect each type of stop signals (traffic light,
stop sign...).

• proba block node: float point value; probability to ac-
cept to block the intersecting roads to enter a new
road.

It provides as well the driver agents with several read only
variables:

• speed : float point value; speed expected according to
the road max value, the car properties, the personality
of the driver and its real speed (see Equation 1 for more
details).

• real speed : float point value; real speed of the car (that
takes into account the other drivers and the traffic sig-
nals).

• current path: path (list of roads to follow); the path
that the agent is currently following.

• current target : point; the next target to reach (sub-
goal). It corresponds to a node.

• targets: list of points; list of locations (sub-goals) to
reach the final target.

• current index : integer; the index of the current goal
the agent has to reach.

• on linked road : boolean; is the agent on the linked
road?

Of course, the values of these variables can be modified
at any time during the simulation. For example, the proba-
bility to take a reverse road (proba use linked road) can be
increased if the driver is stucked for several minutes behind
a slow vehicle.

In addition, the advanced driving skill provides the driver
agents with several actions:
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Figure 3: Drive action

• compute path: arguments: a graph and a target node.
This action computes from a graph the shortest path
to reach a given node.

• drive: no argument. This action moves the driver on
its current path according to the traffic condition and
the driver properties (vehicle properties and driver per-
sonality).

the drive action works as follow (Figure 3): while the
agent has the time to move (remaining time > 0), it first de-
fines the speed expected. This speed is computed from the
max speed of the road, the current real speed, the max speed,
the max acceleration and the speed coef of the driver (see
Equation 1). Then, the agent moves toward the current tar-
get and compute the remaining time. During the movement,
the agents can change lanes (see below). If the agent reaches
its final target, it stops; if it reaches its current target (that
is not the final target), it tests if it can cross the intersection
to reach the next road of the current path. If it is possible,
it defines its new target (target node of the next road) and
continues to move.

speeddriver = Min(max speeddriver,

Min(real speeddriver + max accelerationdriver,

max speedroad ∗ speed coefdriver))

(1)

The function that defines if the agent crosses or not the
intersection to continue to move works as follow (Figure 4):
first, it tests if the road is blocked by a driver at the inter-
section (if the road is blocked, the agent does not cross the

Figure 4: Crossing of an intersection (case where
right side driving is true)

intersection). Then, if there is at least one stop signal at
the intersection (traffic signal, stop sign...), for each of these
signals, the agent tests its probability to respect or not the
signal (note that the agent has a specific probability to re-
spect each type of signals). If there is no stopping signal or
if the agent does not respect it, the agent checks if there is
at least one vehicle coming from a right (or left if the agent
drives on the left side) road at a distance lower than its secu-
rity distance. If there is one, it tests its probability to respect
this priority. If there is no vehicle from the right roads or if
it chooses to do not respect the right priority, it tests if it is
possible to cross the intersection to its target road without
blocking the intersection (i.e. if there is enough space in the
target road). If it can cross the intersection, it crosses it;
otherwise, it tests its probability to block the node: if the
agent decides nevertheless to cross the intersection, then the
perpendicular roads will be blocked at the intersection level
(these roads will be unblocked when the agent is going to
move).

Concerning the movement of the driver agents on the cur-
rent road (Figure 5), the agent moves from a section of the
road (i.e. segment composing the polyline) to another sec-
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Figure 5: Move on the current road

tion according to the maximal distance that the agent can
moves (that will depend on the remaining time). For each
road section, the agent first computes the maximal distance
it can travel according the remaining time and its speed.
Then, the agent computes its security distance according to
its speed and its security distance coeff. While its remain-
ing distance is not null, the agent computes the maximal
distance it can travel (and the corresponding lane), then
it moves according to this distance (and update its current
lane if necessary). If the agent is not blocked by another
vehicle and can reach the end of the road section, it updates
its current road section and continues to move.

The computation of the maximal distance an agent can
move on a road section consists in computing for each pos-
sible lane the maximal distance the agent can move. First,
if there is a lower lane, the agent tests the probability to
change its lane to a lower one. If it decides to test the lower
lane, the agent computes the distance to the next vehicle
on this lane and memorizes it. If this distance corresponds
to the maximal distance it can travel, it chooses this lane;
otherwise it computes the distance to the next vehicle on its
current lane and memorizes it if it is higher than the cur-

Figure 6: Define the maximal distance possible
to travel and the corresponding lane (case where
right side driving is true)

rent memorized maximal distance. Then if the memorized
distance is lower than the maximal distance the agent can
travel and if there is an upper lane, the agents tests the
probability to change its lane to a upper one. If it decides
to test the upper lane, the agent computes the distance to
the next vehicle on this lane and memorizes it if it is higher
than the current memorized maximal distance. At last, if
the memorized distance is still lower than the maximal dis-
tance it can travel, if the agent is on the highest lane and
if there is a reverse road, the agent tests the probability to
use the reverse road (linked road). If it decides to use the
reverse road, the agent computes the distance to the next
vehicle on the lane 0 of this road and memorizes the distance
if it is higher than the current memorized maximal distance.

3.4 Discussion
As presented above, the plug-in allows to simplify the

work of modelers for the definition of traffic simulations
with the GAMA platform. Of course, the plug-in does not
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make GAMA as rich as the existing frameworks for the de-
velopment of such simulations. In particular, it proposes
no tools for the pre-processing of data and do not propose
any features concerning the definition of the construction of
the driver daily activities. However, our tool is perfectly
adapted to modelers that are not computer scientists and
that want to quickly create a specific traffic model (or at
least a prototype) that is not possible to create using di-
rectly the existing framework. The success of generic and
simple platforms such as Netlogo [15] or GAMA have proved
the interest of researchers from many research fields (geog-
raphers, sociologists...) for this kind of tools.

4. APPLICATION EXAMPLE
We illustrate the use of our plug-in for a simple model

concerning the simulation of the traffic of the city of Rouen
(France, Normandie). This city of 111553 inhabitants is
built on the two sides of the Seine River. Five bridges allow
to cross the river. These bridges are particularly critical for
the traffic in Rouen. For instance, a truck (transporting fuel)
accident has caused the closing of the Mathilde bridge since
the 29th October of 2012. This bridge, which was the most
used to cross the Seine (80 000 vehicles per day), should
remain closed until summer 2014. This accident had (and
still have) an important impact on the traffic as it has led
to the multiplication of traffic jams.

As the goal of this model is just to illustrate the use of
the new driving plug-in, we did not use real data to de-
fine the driver origin and destination: we affected to each
driver agent a random initial location (one of the node) and
a random final target (one of the node). When a driver
agent reaches its destination, it just chooses a new ran-
dom final target. In the same way, we did not define any
specific behavior to avoid traffic jam for the driver agents:
once they compute their path (all the driver agents use for
that the same road graph with the same weights), they
never re-compute it even if they are stucked in a traffic
jam. Concerning the traffic signals, we just consider the
traffic lights (without any pre-processing: we consider the
raw OSM data). One step of the simulation represents 1
second. At last, in order to clarify the explanation of the
model, we chose to do not present the parts of the GAML
code that concern the simulation visualization. The com-
plete model is available on the GAMA SVN (is downladable
from the GAMA website [1]).

Figure 7 shows the total area (road and node shapefiles)
that we choose to take into account in the simulation. This
area is composed of 8000 roads and 6000 nodes. We used
the OSM data (converted as shapefiles) of Rouen. A pre-
process has been applied on the data in order to create a
node shapefile from the road shapefile: a node is created
at the extremity of each road (when several roads intersect
each other, only one node is created at the intersection).
Note that a GAMA model, available on the GAMA SVN,
allows to directly pre-process the OSM data and to create
the node and road shapefiles from them.

The following code shows the definition of species to rep-
resent the road infrastructure:

species road skills: [skill_road] {

string oneway;

}

Figure 7: Total area simulated: in black the roads
and in yellow the nodes

species node skills: [skill_road_node] {

bool is_traffic_signal;

int time_to_change <- 100;

int counter <- rnd (time_to_change) ;

reflex dynamic when: is_traffic_signal {

counter <- counter + 1;

if (counter >= time_to_change) {

counter <- 0;

stop[0] <-empty(stop[0])? roads_in : [];

}

}

}

In order to use our driving plug-in, we just have to add
the skill road node to the node species and the skill road to
the road species. In addition, we added to the road species
a variable called oneway that will be initialized from the
OSM data and that represents the traffic direction (see the
OSM map features for more details). Concerning the node,
we defined 3 new attributes:

• is traffic signal : boolean; is the node a traffic light?

• time to change: integer; represents for the traffic lights
the time to pass from the red light to the green light
(and vice versa).

• counter : integer; number of simulation steps since the
last change of light color (used by the traffic light
nodes).

In addition, we defined for the node species a reflex (be-
havior) called dynamic that will be activated only for traffic
light nodes and that will increment the counter value. If this
counter is higher than time to change, this variable is set to
0, and the node change the value of the stop variable: if the
traffic light was green (i.e. there is no road concerns by this
stop sign), the list of block roads is set by all the roads that
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enter the node; if the traffic light was red (i.e. there is at
least one road concerns by this stop sign), the list of block
roads is set to an empty list.

The following code shows the definition of driver species:

species driver skills: [advanced_driving] {

reflex time_to_go when: final_target = nil {

current_path <- compute_path(

graph: road_network, target: one_of(node));

}

reflex move when: final_target != nil {

do drive;

}

}

In order to use our driving plug-in, we just have to add
the advanced driving to the driver species. For this species,
we defined two reflexes:

• time to go: activated when the agent has no final tar-
get. In this reflex, the agent will randomly choose
one of the nodes as its final target, and computed
the path to reach this target using the road network
graph. Note that it will have been possible to take
into account the knowledge that each agent has con-
cerning the road network by defining a new variable of
type map (dictionary) containing for each road a given
weight that will reflect the driver knowledge concern-
ing the network (for example, the known traffic jams,
its favorite roads....) and to use this map for the path
computation.

• move: activated when the agent has a final target. In
this reflex, the agent will drive in direction of its final
target.

We describe in the following code how we initialize the
simulation:

init {

create node from: file("nodes.shp") with:[

is_traffic_signal::read("type")="traffic_signals"];

create road from: file("roads.shp")

with:[lanes::int(read("lanes")),

maxspeed::float(read("maxspeed")),

oneway::string(read("oneway"))]

{

switch oneway {

match "no" {

create road {

lanes <- myself.lanes;

shape <- polyline(reverse

(myself.shape.points));

maxspeed <- myself.maxspeed;

linked_road <- myself;

myself.linked_road <- self;

}

}

match "-1" {

shape <- polyline(reverse(shape.points));

}

}

}

}

map general_speed_map <- road as_map

(each::(each.shape.perimeter/(each.maxspeed)));

road_network <- (as_driving_graph(road, node))

with_weights general_speed_map;

create driver number: 100000 {

location <- one_of(node).location;

vehicle_length <- 3.0;

max_acceleration <- 0.5 + rnd(500) / 1000;

speed_coeff <- 1.2 - (rnd(400) / 1000);

right_side_driving <- true;

proba_lane_change_up <- rnd(500) / 500;

proba_lane_change_down <- 0.5+ (rnd(250) / 500);

security_distance_coeff <- 3 - rnd(2000) / 1000);

proba_respect_priorities <- 1.0 - rnd(200/1000);

proba_respect_stops <- [1.0 - rnd(2) / 1000];

proba_block_node <- rnd(3) / 1000;

proba_use_linked_road <- rnd(10) / 1000;

}

}

In this code, we create the node agents from the node
shapefile (while reading the attributes contained in the shape-
file), then we create in the same way the road agents. How-
ever, for the road agents, we use the oneway variable to
define if we should or not reverse their geometry (oneway =
”-1”) or create a reverse road (oneway = ”no”). Then, from
the road and node agents, we create a graph (while taking
into account the maxspeed of the road for the weights of
the edges). This graph is the one that will be used by all
agents to compute their path to their final target. Finally,
we create 10000 driver agents. At initialization, they are
randomly placed on the nodes; their vehicle has a length of
3m; the maximal acceleration of their vehicle is randomly
drawn between 0.5 and 1; the speed coefficient of the driver
is randomly drawn between 0.8 and 1.2; they are driving
on the right side of the road; their probability of chang-
ing lane for a upper lane is randomly drawn between 0 and
1.0; their probability of changing lane for a lower lane is
randomly drawn between 0.5 and 1.0; the security distance
coefficient is randomly drawn between 1 and 3; their prob-
ability to respect priorities is randomly drawn between 0.8
and 1; their probability to respect light signal is randomly
drawn between 0.998 and 1; their probability to block a node
is randomly drawn between 0 and 0.003; their probability to
use the reverse road is randomly drawn between 0 and 0.01;

We carried out a simulation of 1000 simulation steps (1000
seconds) on a i7 computer using only one of the computer
cores. The duration of the simulation (without taking into
account the time taken by the displaying of the simulation)
was 1 second per step if we take into account the time spent
by the shortest path computation by the Dijkstra algorithm
or 0.3 second per step if we do not. Figure 8 shows a snap-
shot of the simulation. We can observe the emergence of
traffic jams, driver agents stopping at a red traffic light and
using the different lanes of the roads.

5. CONCLUSION
In this paper, we presented a new plug-in for the GAMA

platform dedicated to the development of traffic simulations.
This plug-in allows to define new traffic simulations with a
detailed representation of the driver operational behaviors.

Proceedings of 8th International Workshop on Agents in Traffic and Transportation ATT 2014

22



Figure 8: Snapshot of the simulation (simulation
step: 1000): The driver agents are represented by
the rectangles with a triangle on top; the traffic
lights are represented by the sticks with a red/green
sphere on top

In particular, it allows to take into account the road in-
frastructures and traffic signals, the change of lanes of the
drivers and their respect of norms. We illustrated the use of
our plug-in by a simple model concerning the simulation of
the traffic of the city of Rouen.

In comparison to existing traffic simulation frameworks,
the advantage of our tool is to enable modelers to easily
define models adapted to their application context. Indeed,
the use of the GAML language enables modelers without
high-level programming skills to develop their own models
or at least prototypes.

If the plug-in allows yet to simulate tens of thousands
of driver agents, we plan to improve its efficiency by using
High Performance Computing and in particular distribution
on GPU to enable to carry out large scale simulation with
millions of driver agents.

In addition, we plan to enrich the driving skill in order
to make the driver agents more cognitive, in particular con-
cerning their choice of path and their adaptation to the their
current context. For this, we plan to give the driver agents
a BDI architecture that can be based on [14, 11].

As last, we plan as well to develop new tools to help people
to prepare their data. The goal will be to offer the possibility
from incomplete OSM data (OSM are often incomplete) to
automatically fill the missing attributes, and to create a con-
sistent network (with its infrastructure and traffic signals).
A particular attention will be brought on traffic signals and
traffic lights.
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ABSTRACT 
The Collaborative Decision Making (CDM) paradigm attempts 
to improve the exchange of information among the various 
stakeholders involved in Air Traffic Management (ATM). It is 
aimed at efficient decision making in airport management. 
Although the processes of CDM are considered mature and well 
accepted, in many cases it usually the focus is on the 
information sharing and is still not able to simultaneously 
involve essential agents such as Air Traffic Control (ATC) 
agency, airlines, and airport managers in the decision making. 
This study uses the matching approach of Game Theory to 
construct a two-sided matching market model for slot allocation 
in the Compression step while taking into account Ground 
Delay Programs (GDP). Our proposed model, Deferred 
Acceptance CDM (DA-CDM), assigns each flight to each slot 
through a "one-to-one" relationship, respecting the preferences 
of each allocation, leading to a stable result. It is applied to 
evaluate the classic CDM and Airport CDM processes with a 
group of analytics data. Our results show that the new allocation 
mechanism provides a stable and satisfactory matching of the 
flights with the slots in A-CDM procedure. 
 
Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial 
Intelligence – Intelligent agents, Multiagent systems; I.6.5 
Computing Methodologies, Simulation and Modeling, Model 
Development. 
 
General Terms 
Algorithms, Management, Design, Theory 
 
Keywords 
Multiagent Systems, Collaborative Decision Making, Ground 
Delay Program, Matching Theory. 
 

 
1. INTRODUCTION 
Over the last few years, the increasing global demand for air 
transportation has greatly increased the complexity of the air 
traffic management scenario [5]. This situation enforces new 
integration challenges faced by several stakeholders, such as 
regulation agents, airlines, airport management companies, 
traffic managers, flight crew, passengers, and aeronautical 
system’s manufacturers, among others [17]. 

Some processes, such as those aimed at reducing congestion in 
specific locations in the air scenario, involves the definition of 
delays for aircrafts on ground and are carried through the 
Ground Delay Program (GDP). This process, based on 
Collaborative Decision Making (CDM) concepts, brings the 

need of reallocating aircraft from the scheduled slots originally 
established for the runways of the affected airports [27]. 

Besides its simplicity of concepts, the current CDM model 
involves a limited number of entities in the decision-making 
process [6]. When using traditional CDM model and 
considering the existence of distinct interests on delays applied 
to aircraft, it is difficult task to get the satisfaction of all 
stakeholders who affect and are affected by delays generated by 
a GDP [23]. 

In this context, the matching approach of Game Theory can be 
used to construct the model of markets with the satisfactory 
results regarding the dispute for resources.  By this approach, 
the preferences of all participants in that market are taken into 
account [25]. 

Regardless of the application area, a market can be modeled in 
order to obtain results that account for the different goals 
multiple agents, such as students, schools, doctors, hospitals, 
patients, passengers, airlines, and airports, among others. 
Moreover, the modeling constraints on organ donation markets 
in the 2000s allowed the correct treatment of a wide variety of 
features in more complex scenarios [21, 22]. 

In situations involving the departure coordination, traffic, and 
arrival of multiple flights through Air Traffic Management 
(ATM), mathematicians, economists, engineers, computer 
scientists, and researchers from various fields have developed 
Artificial Intelligence, multi-agent systems, and models based 
on Game Theory, among others. These models are applied in 
domains that involve problems of coordination and competition 
for resources [1, 3, 9, 28, 29]. 

However, most of the studies dealing with problems regarding 
GDP take into account only the interests of traffic control 
institutions and airlines. The limitation of these works based on 
the classic CDM model might lead to a limited level of 
satisfaction among other agents in the CDM process, and, 
consequently, the results of the process may not be stable [23]. 

In Brazil, this fact can be verified by the current situation, in 
which several concessionaires formed by private companies are 
entering the market to manage the major airports of the country 
[15]. The project, which aims to improve the quality of services 
and airport infrastructure, enlarging the supply of air transport 
to Brazilian population, currently handles billions of reais 
(Brazil’s currency) and has duration of 20 to 30 years, 
depending on the granting rules. 

Although the role of the airport operators is of crucial 
significance, the ATM process currently only accounts for the 
ATC agency. Airlines and airport managers still do not 
participate in the decision-making process. Also, it lacks 
methods to model the association of these partners in A-CDM, 
as well as the evaluation of distinct objectives between 
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participating private and public companies. In this context, our 
main contribution is the design of a new model named Deferred 
Acceptance – CDM (DA-CDM), using the matching approach 
of Game Theory. This latter approach allows the expansion of 
the concepts defined in the classic CDM to more general cases. 
The participation of the decision making with airlines and 
airport managers is modeled as two-sided markets. By relying 
on the Deferred Acceptance algorithm [12], a stable output is 
guaranteed as this algorithm ensures the proper treatment of 
various goals amongst agents in the process of relocation of 
slots in a GDP. With the application of the developed algorithm 
and by comparison to the Compression algorithm, we are able 
to show satisfactory matching of the flights with the available 
slots in the A-CDM procedure. 

The remainder of the paper is organized as follows. In Section 2 
we discuss the related studies on collaborative decision making 
and matching markets. The slots allocation algorithms based on 
the classic CDM are presented in section 3. Section 4 describes 
the proposed DA-CDM model, and section 5 presents the 
evaluation of our proposal through a comparative analysis of 
models. We conclude in Section 6 and give suggestions for 
future work. 

 
2. RELATED WORK 
To ensure the safety and flow of flights, ATM deals with the 
possible inequality between demand for airspace use and 
capacity of the existing aviation and airport infrastructure [7]. 
On the other hand, ATM is considered an extremely complex 
and highly specialized task, besides being strongly based on the 
experience of the traffic manager. Its activities address critical 
issues such as efficiency (fluency and delays reduction), equity 
(working with different airlines), adaptability (treating weather 
conditions), trust and security (managing airports).  

This section presents the related researches concerning the 
concepts of A-CDM, matching markets and algorithms of Game 
Theory, and optimization models for slot allocation in airport. 

 
2.1 Collaborative Decision Making 
In the 1990s, the philosophy of Collaborative Decision Making 
(CDM) was considered a new paradigm for the Air Traffic 
Flow Management (ATFM). It was designed based on the 
premise that an evolution in the processes of communication 
and information exchange between Air Traffic Control (ATC) 
agency and airlines would lead to better decisions in managing 
aircraft traffic [4]. At the time, the information exchange 
between Federal Aviation Administration (FAA) and airlines, 
both participants in the CDM, allowed the formulation of the 
current processes of Ground Delay Programs (GDP). 

Usually, the scheduled flight operations are previously allocated 
to a takeoff/landing queue, comprising ATC slots. An ATC slot 
can be seen as a minimum amount of time required for an 
aircraft to be allowed to perform a takeoff or landing operation 
on the runway of a controlled airport [14]. 

The maximum number of aircraft that can land at an airport in a 
given period is known as the Airport Arrival Rate (AAR). The 
same analogy can be made in defining the rate of takeoff in an 
airport as Airport Departure Rate (ADR). 

If it is detected that a sector of airspace will be congested at a 
certain time of the day, the traffic controller must apply 
appropriate measures, trying to reduce the number of aircraft at 
the affected location. This reduction is intended to maintain a 
safe amount of flights operating in the same controlled sector, 
avoiding congestion. 

Although there are various restrictive measures such as ground 
holding delay, airborne holding delay, miles-in-trail, reroute, 
slot swapping, among others. For security reasons, preference is 
given to actions that involve solutions regarding ground 
holding. It is common sense the assumption that it is safer to 
change the conditions of flight of an aircraft that is in the 
ground than in the air [6, 13, 27]. 

When a ground delay program is applied, the AAR of some 
airports is reduced. Therefore, the incoming flights that should 
arrive during the scheduled times of congestion are delayed in 
their takeoffs. This restrictive measure brings a need of a 
change in the original slot allocation schedule of flights that 
will use the runways in these airports. 

In this context, the GDP can be understood as a multi-stage 
process that deals with the management of slots queue 
allocation in airports impacted by operational capacity 
constraints. It is based on algorithms and information exchange 
between agents, being defined and applied by ATC agency with 
the participation of airlines [27]. 

 
2.2 Matching Markets 
Game Theory has been used as a mathematical theory for 
modeling and analysis of the strategies among multiple players 
by economists, mathematicians, biologists and computer 
scientists and others to develop the applications with 
considerable social contribution [16, 26]. In recent years, Game 
Theory has become the focus of several researches in 
transportation studies [3, 4, 19, 23]. 

One of the reasons for the success of this theory is due to the 
diversity of theoretical and real scenarios that it can be applied. 
For example, we can mention the study of stock market, the 
dominance of genes in genetic evolution, regional war conflict, 
election results, economic markets, among others [4, 16, 25]. 

In economics, it is used to study the relationship between 
supply and demand of resources in societies. However, some 
researchers use it to analyze the behavior of allocation 
algorithms, enabling the distribution of these resources among 
agents in specific settings [22].  

Since 1950’s, Game Theory has been used to solve a wide 
range of problems, such as hiring processes in the labor market, 
students’ admissions in the universities, network and internet 
design, organ allocation among patients and donors, among 
others [10,11, 22]. 

As the use of runways of an airport can be considered as a 
limited resource of aeronautical and airport infrastructure, the 
matching markets models can be associated to ATFM processes 
considering the demand and capacity of the runway for aircraft. 
Therefore, the allocation of slots, both for landing or takeoff 
operations can be modeled as a "market". 

Although this association seems intuitive, few studies have so 
far been presented in ATFM.  It is a challenge to exploit the 
potential of the matching approach for enhancement of Airport 
Collaborative Decision Making (A-CDM). 

 
 
 
2.3 Optimization Models for Slot Allocation 
The solution of delaying aircraft at the airport to deal with 
capacity issues is a complex problem known as Ground Holding 
Problem (GHP), in which the aircraft will be affected and the 
delay time assigned to each aircraft.  
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Although there are several methods proposing numerous 
solutions, ranging from operation research to multi-agent 
systems, the Ball et al. [4] and Wolfe et al. [29] researches 
indicate that there is, for a while now, a trend of using 
optimization models based on Game Theory to attend the 
evolution of the A-CDM. 

Rassenti et al. [18] developed a combinatorial auction 
mechanism for airport slots; Ball et al. [4] resumed the study, 
analysis of objectives and concerns regarding aviation auction 
problems. And Balakrishnan [3] developed two solutions based 
on market models using Top Trading Cycle (TTC) and Vickrey-
Clarke-Groves (VCG) pricing mechanisms. 

These innovative studies showed a significant contrast between 
the proposal and the techniques that are currently using in 
ATFM. A process using monetary transfers between airlines, 
during slot allocation, is considered a significant change in the 
current paradigm. In order to determine the acceptability of 
these models, a more detailed analysis of exchange policy is 
required, as well as taking traffic regulators and other 
participants in the CDM to have a new perspective of the 
process. 

In their recent work, Cruciol et al. [8] developed reward 
functions to evaluate the performance related to aircraft on 
ground and in the air management, ground delay control and 
complexity analysis of air sectors. Ribeiro and Weigang [19] 
presented a solution based on Game Theory to management the 
takeoff sequence of aircraft at airports. The proposed decision 
support system called Collaborative Departure Management 
(CoDMAN), was developed under the CDM philosophy. 

On the other hand, the matching approach has been applied to 
ground delay problems which was conceptualized based only 
on the Top Trading Cycle (TTC) algorithm [24]. This 
mechanism considering one-sided markets, has been defined as 
aircraft of airlines oriented models [3, 23]. 

In the model proposed by Balikrishnan [3], the players were 
defined as agents by individual aircraft. The author has 
narrowed the solution to meet specific objectives for each 
flight, without taking into account the strategic decisions of 
each airline. More recently, the model proposed by Schummer 
and Vohra [23] to define the agents as airlines, dealing with 
slots relocation between their aircraft and expanding the CDM’s 
"ownership" concept. Considering the innovation research, the 
study discussed one-sided market, in which only the interests of 
ATC agency and airlines are predicted in its architecture. 

 
3. CDM ALGORITHMS 
The ground delay program (GDP) is a process carried out in 
three steps. Two of these steps are executed by algorithms 
implemented with different functions, as shown in Figure 1. 
This process is implemented in partnership between the Federal 
Aviation Administration (FAA) and airlines according to CDM, 
where the interests of the parties are fulfilled [6]. 

In the classic CDM model, ATC agency and airlines are main 
partners in the collaborative decision making. In this process, 
the airlines provide trusted, reliable, and up-to-date information 
to traffic controllers, such that a better outcome of slot 
allocation can be achieved. 

 
Figure 1: Classic CDM architecture [27]. 
 
After the reduction of airport arrival rate (ARR) by a preset 
time, representing the capacity of the runway configuration in 
the affected airport, the number of aircraft that will operate at 
that location is also reduced. Therefore, the first step of classic 
CDM involving GDP implements the redistribution of slots 
among the new number of aircraft that can operate per hour at 
the airport. 

The Ration-By-Schedule (RBS) algorithm in Classic CDM 
intends to create a new schedule for the allocation of slots with 
revised times, and allocates the flights originally presented 
based on the new schedule. This allocation preserves the 
original order of arrival flights and that is defined for each 
aircraft [27]. Figure 2 shows an example of the application of 
the RBS algorithm. 

 
Figure 2: The application of RBS algorithm [6]. 
 
It is important to note that the effect of delays on aircraft is 
cumulative. For example, if the AAR capacity at any airport is 
reduced from 30 to 15 flights per hour, it will not only result in 
a 4 minute delay for each aircraft affected by GDP. The first 
aircraft in the new schedule will not suffer any delay, the 
second aircraft will use the runway 2 minutes later than in the 
original schedule, while the third aircraft will operate with a 
delay of 4 minutes, and so on. Therefore, in the new schedule, 
the tenth and twentieth aircraft will be assigned a delay of 36 
and 76 minutes, respectively, compared to their arrival times as 
originally planned. 

The opportunity thus for airlines to enables the analysis of the 
results reported by the algorithm, and making strategic 
decisions in order to mitigate the adverse effects of a GDP on 
their flight operations. Therefore, in the step named 
Substitutions and Cancellations, it is the airlines’ responsibility 
to communicate on time: a) the possible delays due to 
mechanical failures and other operational problems, b) the 
cancellations due to internal adjustments and strategic decisions 
by airlines on their flights, and c) the replacements of flights 
among slots “owned” by the same airline, in which a flight can 
be prioritized over another. 
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After this second step, the new schedule created by the 
restrictions imposed by the GDP may contain "holes" due to the 
cancellations, which might in turn leave slots with no flights 
assigned to them. 

To optimize the process, in which some slots from the current 
schedule would not be used, an algorithm was created, known 
as Compression, which fills the gaps in vacant slots according 
to pre-defined rules between ATC agency and the airlines. 

The Compression algorithm works as follows: when a slot is 
vacated, the Compression tries to allocate it with another flight 
from the same airline that "owns" that slot. If the algorithm 
finds a feasible flight, it performs the exchange, but if there are 
no flights available, then the algorithm will seek a flight that 
belongs to another airline. If such a flight is found, the 
algorithm will allocate it in the slot, also changing the slot 
"ownership" between the airlines. If no flight is found, the 
algorithm will simply declare the slot as unused. 

The algorithm must handle restrictive slot swapping parameters 
for a flight to be considered "feasible", such as minimum 
operating hours and minimum times for arrival at airports [13]. 

According to [6], this model was built through some basic 
concepts in CDM philosophy: the concept of "property", by 
which each airline has total control over its slots, without 
invading the allocations of competing companies, the concept 
of "priority", by which flights of the airline that owns the vacant 
slot are handled first, and the concept of " justice", by which 
each airline receives a percentage of slots equal to the 
percentage that it had in the original flight schedule (Official 
Airline Guide - OAG). More information on this process can be 
found in [6, 13, 27]. 

Since its adoption, the Compression algorithm has presented 
several limitations on the CDM philosophy, regarding its use. 
According to Schummer and Vohra [23], the algorithm does not 
guarantee that airlines report, in some cases, their flight 
cancellations. This situation causes the slots to become 
unusable, since the competing airlines cannot reallocate their 
flights to better positions in the schedule. In more serious cases, 
the algorithm can generate unstable results. 

 
4. DA-CDM MODEL 
The model proposed in this paper is based on the allocation 
mechanism proposed by Gale and Shapley [12], which became 
known as Deferred Acceptance. The choice of this mechanism 
is justified by its maturity in solving practical problems in two-
sided matching markets, dating from the 1950s, and by its wide 
usage in complex scenarios that includes from geographical 
restrictions to compatibility between organ donors [20, 21, 22]. 

Since the ground delay program (GDP) can be seen as a 
problem of resource allocation, the environment can be 
characterized as a "slots market" in which there are two sets, 
one representing a group of flights and another a group of slots. 
Dealing with this market by using the DA-CDM model aims to 
assign each flight to each slot, through a "one-to-one" 
relationship, respecting the preferences of each allocation, 
which leads to a stable result. 
 
4.1 Agents Selection 
Decision makers in this model have been defined based on key 
players from “slots market" and studies undertaken by Norin 
[17] on the ATM stakeholders. In his work, the importance of 
ATC agencies and airlines as active participants in the CDM 
philosophy becomes explicit, together with the airport manager 
in the airport infrastructure, impacted by a ground delay 
program (GDP). These agents are defined as: 

• ATC Agent: is characterized by a single agent responsible for 
detecting congestion in advance by predicting aircraft 
occupancy in the air scenario using data available in the flight 
schedule. Its goal is to control and optimize the traffic flow, 
applying the security measures at airports when necessary by 
ATC agency. 

• Airline Agents: are agents that have flights that will be 
operating in a given day. Each agent’s goal is to control its 
aircraft with regards to planned times of takeoff and landing, 
reporting possible schedule changes due to technical and/or 
mechanics operational problems, or cancellations that may 
interfere in the original flight schedule. 

• Airport Agents: are agents represented by the airports of 
origin and destination, defined in the flight schedule. Their 
goal is to maintain the appropriate flow of takeoffs and 
landings in their runways, adapting to the operational capacity 
restrictions specified by the ATC Agent. 

It is important to note that the ATC agent represents a 
centralizing agent in the market and has no preferences for 
allocation over any elements in the scenario, due to safety and 
aircraft traffic flow concerns. In this matter, the Airline and 
Airport agents can be characterized as decision-makers in the 
slots allocation problem. They are responsible for determining 
strategies based on their own goals, in order to enable the 
correct formulation of the new schedule for airport runways 
use, in a moment of GDP. 
 
4.2 Reward Structure  
Each agent group’s goal in this market may be different and 
even contradictory. For airlines, it’s important to reduce the 
total delay of their flights, reducing the costs inherent to these 
delays, prioritize strategic flights over others, treating 
differently passengers in international flights or with stopovers, 
etc. As for the airport's concessionaire, maybe the goal is to 
optimize the aircraft flow in the apron, to enlarge the rate of 
passengers’ arrivals, to prioritize flights already en route, 
among others.  

As an initial proposal, a simple approach was defined in order 
to model the objective function of Airlines agents, according to 
Equation 1. In this definition, a strategy focuses on the 
operating profit of each aircraft belonging to a set of flights of a 
given airline. 

𝑅!(𝑓) = 𝛼(𝑓) 𝑠𝑟 𝑝! − 𝑣𝑐 𝑝!
!
!!! − 𝑓𝑐(𝑓)                (1) 

where sr is the sales revenue, vc is the variable cost and fc is the 
fixed cost per passenger p of flight f, for a total of q passengers 
of the same flight. The function α is the importance given to 
flight f by its airline, with a value x, where 0 < x <= 1. This 
function allows the airlines with the possibility to prioritize 
some flights over others. Thus, policies have not addressed by 
Equation 1, because it is still not knew how the destination of 
the flight, the aircraft size, etc. can be treated. In this 
configuration, the higher the RF value, the more profitable is the 
flight for the airline responsible. 

The objective function of the Airport agent is shown in 
Equation 2 based on a strategy that prioritizes flights according 
to the amount of passengers and to the aircraft’s delay time. 
This policy allows the decongestion from inside the airports of 
origin and the improvement of people flow expected in the 
destination airport. Moreover, it helps to reduce the stress on 
crew and passengers of each flight. 

𝑅! 𝑓 = 𝛽 𝑓   𝑞! !!!" ! ,      !                                                  (2) 

where t represents the current time, at is the estimated time of 
arrival, q is the total number of passengers of flight f and c is an 
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adjustment constant. The β function is the importance given by 
the airport manager to flight f, with a value x, where 0 < x <= 1. 

The θ function aims to process the result of the difference 
between the times t and at, in minutes [2, 8]. If the calculation 
is zero or negative, indicating that the flight is not delayed, the θ 
function returns the value 1. If the calculation is positive, this 
value is divided by the adjustment constant c, and the function θ 
returns the integer portion of the value. For example, if a 
flight’s estimated time of arrival is 09:30 and it’s now 11:00, 
the 90 minutes difference will be divided by c. If c is equal to 
30, the function θ returns the value 3. If c is 60, the θ function 
returns the integer part 1. Therefore, the higher the value of c, 
the lower is the importance given to the flight delay.  

It is important to note that the equations presented allow us to 
set a priority to flights affected by ground delay program 
(GDP), enabling an ordering among them. 
 
4.3 Formal Definition 
A market of slots with one-to-one relationship is formed by < 
F, S, ≻F , ≻S >, where F and S are disjoint and finite sets of 
allocable elements, where F represents flights f1 , f2 , ... , fm ε F 
and S represents slots available in the market s1 , s2 , ... , sn ε S, 
containing m e n elements separately.  

The elements of the set of arrival slots S = {1, 2, 3, ..., | S |} can 
be interpreted as ordinal representations of time: for s, v ε S, 
where s < v means that a slot s represents a time earlier than the 
slot v. 

The earliest possible arrival time (EPAT) for flight f ε F is 
denoted by ef ε S. Therefore, the flight f might be assigned to 
slot si ε S where i = 1, …, | S |, only if ef ≤ si. If the EPAT of a 
flight f is 10:00am, it will never be able to land in a 09:30 slot at 
the destination airport. 

Each flight fj, where j = 1, ... , | F |, has a strict, complete, and 
transitive preference ≻F over the elements of the other set. The 
same analogy can be drawn about the preference lists of slots 
≻S. 

By “complete”, it can be understood that all the elements from a 
set can sort all the elements from the other set in relation to any 
possible choice, without presenting any indecision in the 
ordering. By "strict" preference, we mean that the elements of 
this market should be able to classify each element of the 
opposite set according to a strict preference order, i.e., without 
indicating indifference between them. As for "transitive", we 
understand that there is a consistency in the choices made based 
on the preferences in a set.  

The individual lists containing the ordered preferences can be 
represented as a set P(f) where P(f) = s2 ≻ s1 ≻ s3 ≻ … ≻ sn 
means that the flight f strictly prefers to be allocated to slot s2 
rather than slot s1.  If the flight f cannot be allocated to slot s2 so 
it prefers to be allocated with s1, and so on. 

Allocation preferences are defined by decision maker agents 
using equations 1 and 2, in which airlines are responsible for ≻F 
preferences for each of their flights f and the airport affected by 
GDP is responsible for the ≻S preferences of each slot s. 

A matching is the result of this market, represented by the 
association of elements from a set with elements from another 
set through the function µ: F ∪ S → F ∪ S such that µ(f) = s ⟺ 
µ(s) = f, for all f ϵ F, s ϵ S. 

A "blocking pair" is formed by the pair (f, s) ε F x S if both 
prefer each other rather than their pairs formed in the matching 
µ, i.e., s ≻F µ(f) e f ≻S µ(s). 

A matching is "stable" if it presents a satisfactory allocation for 
all elements of the sets, where there is no blocking pair. 
 
4.4 DA-CDM Allocation Algorithm 
Using Deferred Acceptance algorithm, the allocation algorithm 
is modeled to run after the substitutions and cancelations step. 
There are two procedures: pre-processing and main steps. 
 
Algorithm Pre-processing 
Input: sets F and S, where: 

- F represents the set of flights f, such that f ϵ F, and; 

- S represents the set of slots s, such that s ϵ S. 

Output: < F, S, ≻F , ≻S >, where: 

- ≻F represents the set of preferences of each f ϵ F, and; 

- ≻S represents the set of preferences of each s ϵ S. 

1: 

 

2: 

 

Based on a list of flights F, the airport defines a list of ≻S 
preferences for each slot s, guided by strategic premises, 
according to equation 1;  
Each airline defines the preferences order for their flights f 
according to available slots in s. In this model, we use 
equation 2. 

 
After the formulation of the necessary information for the slot 
reallocation processes, the main algorithm tries to achieve a 
result that provides a stable matching, considering the 
preferences of each element in the market. 
 
Algorithm DA-CDM Allocation 

Input: a slot market < F, S, ≻F, ≻S >, representing a new 
landing schedule, updated according to the RBS process and 
the informations regarding delays, cancelations and 
substitutions from the previous stages. 

Output: a new schedule of stable landings µ: F ∪ S. 
1: 

 

   

2: 

 

 
j: 

 

 

 
Stop 

Each flight f ϵ F makes an allocation offer to its 
preferred slot, according to: 
a) The feasible arrival time rule, where s ≥ ef, and the 
order in its preference list ≻f. 
Each slot s ϵ S accepts its preferred proposal, rejecting 
all the others, according to:  
a) The feasible arrival time rule, where s ≥ ef, and the 
order in its preference list ≻s. 
Any flight f ϵ F that is rejected in the step  j –1 makes a 
new allocation offer to its next preferred slot s ϵ S that 
have not rejected it yet, according to rule 1a. Each slot s 
ϵ S remains allocated to its best offer so far, rejecting 
any other, respecting rule 2a,	
  j = 1, 2, ..., m, m = | F |. 
When there are not new proposals to be made:  
a) rationalize vacant slots, placing aircraft in better 
positions, respecting the order already defined and the 
feasible arrival time rule, where s ≥ ef. 
b) remaining vacant slots are distributed among the 
owner airlines, respecting the original order of the 
algorithm; 
c) the algorithm terminates. 

With the feasible arrival time rule present in 1a and 2a, the 
algorithm ensures the correct processing in case of 
inconsistency in preference lists of flights and slots, represented 
by the situation where s < ef. It is important to note that the 
airlines and the airport are responsible for creating these rules, 
which are defined, in this paper, by Equations 1 and 2. 
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As ef is based on the original time of each flight, we have two 
different scenarios that the algorithm does not need to address: 
a) the situation where the feasible arrival time of a flight is the 
last slot in the schedule, because for all flights f ε F, each ef < 
|S|; b) there is not a situation where two flights have the same 
arrival slot at the destination airport, because for all flights f, f' ε 
F, ef ≠ ef ’. 

The algorithm must always follow the ordered preference lists 
of all allocable elements in the model. According to the “Stop” 
step, each flight is definitely allocated to the slot it was 
associated with in the last step of the algorithm, where the result 
is always a stable matching. The proof of stability and stopping 
for the allocation mechanism for two-sided matching markets is 
given by Gale and Shapley [12]. 

 
5. COMPARISON AND DISCUSSION  
In this section we present the solutions to an analytic example 
of a ground delay program. The purpose hereof is illustrating 
the performance of our proposed methodology and to compare 
the different features of the Classic CDM and DA-CDM 
models. 

After running the Ration-By-Schedule (RBS) algorithm and the 
Substitutions and Cancellations step (see Figure 1), performed 
by airlines, suppose the initial scenario of the third step is as 
shown in Table 1. 

Table 1. Initial setting for step 3 of the GDP. 

SLOT Flight Airline ef 
s1 empty A  
s2 empty B  
s3 f3 C 1 
s4 f4 B 1 
s5 f5 A 2 
s6 f6 D 5 

 
This example shows four aircraft belonging to the airlines A, B, 
C and D, respectively, competing for six slots of which two are 
vacant due to flight cancellation in the previous step, as well as 
Substitutions and Cancellations. The feasible arrival time of 
each aircraft is shown in column ef. This schedule is based on 
the time originally scheduled for flight f, and represents the 
restriction that the flight can only get to slot s in the destination 
airport if s ≥ ef.  

Based on this information, in a preprocessing step, the 
algorithm defined in the DA-CDM model creates preference 
lists where, by Equation 1, airline agents are responsible for the 
aircraft and, according to the rules defined in Equation 2, the 
airport agent is responsible for slots preferences. For illustrative 
purposes only, we hypothetically define the preferences of all 
allocable elements (flights and slots) as shown in Table 2. 

Table 2. Preferências dos voos e SLOTS. 
Airline Agent Airport Agent 

P(f3) = {s1 ≻ s3 ≻ s2 ≻ s4 ≻ s5 ≻ s6} 

P(f4) = {s1 ≻ s3 ≻ s2 ≻ s4 ≻ s6 ≻ s5} 

P(f5) = {s3 ≻ s6 ≻ s4 ≻ s1 ≻ s5 ≻ s2} 

P(f6) = {s4 ≻ s2 ≻ s1 ≻ s3 ≻ s5 ≻ s6} 

P(s1) = { f5 ≻ f4 ≻ f3 ≻ f6 } 

P(s2) = { f5 ≻ f3 ≻ f4 ≻ f6 } 

P(s3) = { f6 ≻ f4 ≻ f3 ≻ f5 } 

P(s4) = { f5 ≻ f6 ≻ f3 ≻ f4 } 

P(s5) = { f6 ≻ f5 ≻ f3 ≻ f4 } 

P(s6) = { f4 ≻ f5 ≻ f6 ≻ f3 } 

 
At this point, the main processes from Classic CDM and DA-
CDM perform as follows: 

Compression 1: starts by searching for flights from airline A 
that may be allocated to s1. The only active flight from airline A 
is f5, but it cannot be allocated because its feasible arrival time 
(ef) is s2. Therefore, since A has no more feasible flights, the 
flight from the next company that can be assigned to s1 is f3 
from airline C. After performing the swapping, the algorithm 
also exchanges the slot’s ownership between airlines. 

DA-CDM 1: flights f3 and f4 make allocation proposals to slot 
s1, and flight f5 makes a proposal to s3, which are, according to 
the preference lists in Table 2, all their first choices. Flight s6 
would like to propose an association with s4, but since its ef is 5, 
its proposal is directed to s5, in accordance with the algorithm’s 
first rule. The slot s1 accepts f4’s proposal, which is its most 
preferred flight, rejecting flight f3. The slot s3 accepts f5’s 
proposal, those being its only proposals so far, and s5 accepts 
flight f6 under rule 2a. 

After the processes’ execution, the resulting allocation from the 
first cycle is shown in Table 3. 

Table 3. Compression x DA Algorithm (end of cycle 1). 

 
SLOT 

CDM DA-CDM 
Flight Airline ef Flight Airline ef 

s1 f3 C 1 f4 B 1 
s2 empty B     
s3 empty A  f5 A 2 
s4 f4 B 1    
s5 f5 A 2 f6 D 5 
s6 f6 D 5    

 
Under this scenario, the processes run again as following step 2:  

Compression 2: in this moment, the algorithm verifies that the 
slot s2, which is vacant, belongs to airline B and its flight f4 can 
be moved to s2, according to his feasible arrival time. Therefore, 
the algorithm executes the swapping.  

Table 4. Compression x DA Algorithm (end of cycle 2). 

 
SLOT 

CDM DA-CDM 
Flight Airline ef Flight Airline ef 

s1 f3 C 1 f4 B 1 
s2 f4 B 1    
s3 empty A  f3 C 1 
s4 empty B     
s5 f5 A 2 f6 D 5 
s6 f6 D 5    

 
DA-CDM 2: in this new cycle, the flight f3 makes an allocation 
proposal to slot s3, second in the preference list and not yet 
rejected. Even though s3 is assigned to f5, according to its 
preference list, the slot s3 prefers to be allocated to f3 rather than 
to f5. Thus, it dispenses with the flight f5 and gets f3. Table 4 
shows the result of the end of cycle 2. 

Now it is possible to verify the execution of the rest processes. 

Compression k: the next vacant slot belongs to airline A and 
among its flights that can be allocated to it. The flight f5 is 
chosen by the algorithm due to ef ≤ s3. The slot s4 remains 
vacant because there are no flights that could be allocated and 
flight f6 is allocated to s5, respecting its feasible arrival time of 
5. 

DA-CDM k: as the flight f5 was rejected in the previous cycle, 
now it makes a proposal to the next slot on its preference list 
that has not yet rejected it. Therefore, f5 is allocated to s6. As 
there are no more proposals to be made, by the “Stop a” step, f3 
can be moved to s2, and f5 can be moved to s3. Since the ef from 
flight f6 is 5, its position cannot be improved. Meanwhile, by 
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the “Stop b” step, the vacant slots are distributed among its 
owner airlines, according to their original order in Table 1. 

As the vacant slots cannot be allocated to any more active 
flight, the algorithms terminate with the schedule presented in 
Table 5. 

Table 5. Compression x DA Algorithm (end of the process). 

 
SLOT 

CDM DA-CDM 
Flight Airline ef Flight Airline ef 

s1 f3 C 1 f4 B 1 
s2 f4 B 1 f3 C 1 
s3 f5 A 2 f5 A 2 
s4 empty B  empty A  
s5 f6 D 5 f6 D 5 
s6 empty A  empty B  

 
This hypothetical scenario enables the monitoring of both 
algorithms operation. It is important to note that, in the DA-
CDM model, airlines B and C were not rewarded or punished in 
the allocation DA-CDM process. All allocations were made 
respecting both preferences of airlines on flights, and of the 
airport on slots. The original order of vacant slots was also 
remained by the end of the process, enabling a more equitable 
allocation for airlines. This is important in situations where the 
algorithm needs to be reprocessed due to dynamic changes in 
the air scenario.  

Based on this example, on the execution of each process, and on 
the evidence from literature (see Section 3 and 4), the main 
features of both models can be verified as shown in Table 6. 

Table 6. Comparison between Classic CDM and DA-CDM. 

Items Classic CDM  DA-CDM 

Agent 
ATC 

Deals with runway use 
restrictions, imposed on 
airports. 

To deal with runway 
use restrictions, 
imposed on airports. 

Agent 
Airline 

Do not have strategic 
preferences over 
aircraft allocation. 

With the strategic 
preferences over 
aircraft allocation. 

Agent 
Airport Not mentioned. 

With the strategic 
preferences over slots 
allocation. 

Arrival 
slots 

Are filled whenever 
possible. 

To be filled whenever 
possible. 

Property 

If an airline cannot use 
its available slot, it is 
always compensated 
with slot “ownership” 
to exchange with 
another airline that 
owns a flight available. 

The airlines retain 
ownership over their 
vacant slots at the end 
of the process, 
ensuring the original 
order of slots. 

Priority 

The flights from the 
airline that owns the 
vacant slot are 
considered before the 
flights of other airlines. 

All flights have the 
same priority in the 
process. 

Justice 

At the end of the 
process, each airline 
has the same percentage 
of slots they did at the 
beginning of the 
process. 
 

At the end of the 
process, each airline 
has the same 
percentage of slots  
what they did at the 
beginning of the 
process. 

Slots loss 

There is no possible 
way an airline loses 
involuntarily a slot that 
it owns. 

There is no possible 
way for an airline to 
lose involuntarily a 
slot that it owns. 

Order of The order by which The order by which 

operation flights are chosen to 
operate impacts on the 
final result of 
allocation. 

flights are chosen to 
operate does not 
impact on the final 
result of allocation. 

Estability It may produce unstable 
results. 

It always finds a stable 
result. 

 

As showed in Table 6, both methods have positive and negative 
aspects. The proposed model solves the slot allocation problem 
using Game Theory. The algorithm developed in this paper 
allows one more ATM stakeholder participate of the GDP 
process enhancing classic CDM concepts. It is important to 
mention that using Game Theory all agent preferences are 
respected by the new algorithm. 

 
6. CONCLUSIONS AND FUTURE WORK 
We present a Deferred Acceptance CDM model using a 
matching approach for airport collaborative decision making 
(A-CDM) with the participation of three agents: ATC agency, 
airlines and airport managers. As the ground delay program 
(GDP) is a sophisticated process with dynamic online control 
property and limited slot resources, the mechanism of two-sided 
matching markets demonstrates a suitable solution to allocate 
flight slots in Airport CDM. The proposed model also involves 
a new player such as the airport managers concerning the 
restrictive measures in the application of ground delay program. 

Comparing to the Compression algorithm in classic CDM, the 
DA-CDM algorithm aims to assign each flight to each slot, 
through a "one-to-one" relationship, respecting the preferences 
of each allocation. This leads to a stable allocation in the case of 
flight delay(s), as well as in other cases. The main benefits for 
the partners in CDM and the advantages of the developed 
model can be summarized as: 

• For the ATC agency, the DA-CDM model provides the 
allocation results by a reliable process including ground delay 
program (GDP), in which the standards of flow and flight 
safety are maintained. 

• For airlines, the DA-CDM model provides the allocation 
results for aircrafts by an efficient process directly to reduce 
the operation cost in taxiing, fuel, crew expenses, and also to 
reduce the impact to environment. 

• For airport managers, the DA-CDM model involves their 
participation in the decision making process to help the 
management and optimization of airport resources by 
improving the fluency of aircrafts on runways, coordination 
on the apron and the passengers´ movement through gates, 
among others. 

• Even the DA-CDM model does not involve the decision 
participation of the passengers, the application of the 
developed model can reduce the delays by applying 
coordinated actions between airlines and airports achieving a 
greater proximity of the flights’ original departure and arrival 
times. 

Besides allowing the participation of key agents in the ground 
delay program, DA-CDM model also allows the definition of 
preferences of airlines and airport managers to allocate a 
aircraft to a slot that are respected by the Deferred Acceptance 
algorithm. This is an important feature of the matching 
mechanism that can be used to create the possibility of defining 
specific roles for each agent. This advantage is for ATC agency, 
airlines, and airport managers to develop the local strategies in a 
global solution. 

It is important to note that, in the current A-CDM application, 
the airport managers are absent in the decision process.  In our 
proposed model, airport managers are included as a decision 
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agent in the A-CDM process. They affect and are affected by 
GDP involving the processes of takeoff and landing. The airport 
managers are also responsible for ground handling of aircraft 
and services for passengers, such as airport operators, aircraft 
operators, and ground service handlers, among others. This part 
should be also included in the A-CDM process. 

As the future work, the DA-CDM may be modified with the 
capacity to define the preferences from airport managers such 
as approach managers (APP), tower, ground, and other 
managers from various airport services. Further, the analysis of 
time and complexity on the algorithm could be provided and 
DA-CDM should be modified with the capacity to get the 
optimization results via Pareto efficiency. In the application of 
the DA-CDM, some performed tests should be also considered 
with the different purposes for each agent. For example, the 
allocation effects on aircraft can be analyzed in difference 
scenarios. Attention could also be given to handling the 
possible coalition between airlines by using real data from the 
Brazilian Air Navigation Management Center (CGNA).  
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ABSTRACT
This paper considers the (intelligent) vehicle domain from the per-
spective of situational awareness, but based on knowledge, rather
than data, attempting to model the context of the (human) driver
rather than that of an auto-pilot. We set out a (driver) simulation
framework, in which some vehicles are operated by a collection
of norm-aware BDI agents and connect this with the SUMO traf-
fic simulation environment, which provides the background traffic.
While the driver collective retains autonomy with respect to road
conditions and actions, it receives guidance from several institu-
tional models that implement social reasoning about the context in
which the vehicle is currently situated. We demonstrate the bene-
fit of rapid visualization of simulation metrics and use a range of
domain-relevant metrics to show how it is possible to assess both
collective (e.g. traffic flow) and individual impact (fuel consump-
tion) arising from individual vs. institutional decision making.

Keywords
multiagent systems, intelligent transportation systems, autonomous
vehicles

1. INTRODUCTION
The ability of autonomous agents to operate in pursuit of both

their own goals, as well as comply with obligations from a collec-
tive view, presents numerous challenges but a significant number of
potential benefits. In order to explore what may be possible, a sim-
ulation framework has been established with a number of vehicle
specific scenarios to assess both the suitability of the framework for
such investigations, and to capture individual and global measure-
ments of the effect of institutional governance in these scenarios.

An underlying assumption in the various scenario themes is that
of knowledge exchange, both for the derivation of understanding
about the environment, and the approach to how this data is shared
between distributed components. The concept of Situational Aware-
ness is adopted as a means to categorise information ‘levels’, con-
sidering Endsley’s [14] concepts of perception, comprehension and
projection as a transition from ‘low’ level information (e.g. a geo-
graphic xy location of another vehicle) to ‘high’ level information
(e.g. given current speed and heading, there may be a collision
based on the other vehicle’s xy). We explore this theme and related
concepts in Section 2.

The mechanism used to exchange these various information lev-
els also needs consideration. A publish-subscribe mechanism has
been adopted based on the Extensible Messaging and Presence Pro-
tocol (XMPP) [31] framework. Within this, information is pack-
aged according to the Resource Description Framework (RDF), to
add semantic annotation to the information exchanged, or JSON,

where semantic information is not required. Coupled with a XMPP
messaging server, this represents the nucleus of the simulation en-
vironment and is referred to as the Bath Sensor Framework (BSF).
Supplemental tools have been built around this in order to assess
data flow, from low level metrics (e.g. messages per second) through
to a 3D representation of the environment and inferred ‘high level’
knowledge (e.g. collision volumes, upcoming traffic lights). More
details about this aspect appear in Section 3.

The Belief-Desire-Intention (BDI) [10] model is adopted as the
agent architecture in this work and specifically the Jason [9] plat-
form, providing a multiagent system where agents store beliefs and
available plans in order to pursue goals. In the context of the BSF
framework, Jason is extended to process RDF data and pass it on to
agents, who react accordingly, and can trigger actions back to the
environment through creation of suitable RDF requests. The BDI
model has been demonstrated in vehicle convoy scenarios (e.g. [27]
and [3]) and that work is built upon further here.

In order to augment the capability of these agents to operate col-
lectively and to be able to function in new situations about which
they have no prior knowledge, the use of an institutional framework
has been integrated into the BSF simulation. As an agent senses its
world view via received RDF data triples, so does (each instance
of) an institution, and whereas an agent may not have a suitable
plan or belief handling for a given situation (e.g. socially complex
or ambiguous cases) an institution, embodying situation-specific
knowledge, can issue appropriate obligations to participants in or-
der to achieve common goals. Furthermore, the institution is able
to act as a situational governance mechanism, issuing obligations to
individuals which might be contrary to the maximum satisfaction
of their current desires, but of benefit to the wider collective (e.g.
one vehicle being told to move out of the way to allow a queue to
pass). We discuss the institutional aspect in more detail in Section 4

The opportunity to integrate such technology with real world
vehicles increases as autonomous vehicles step ever closer to the
mainstream. With Google’s driver less car [24] and the Volkswa-
gen based ‘MadeInGermany’ [16] vehicles both gaining mileage
over the last few years, as well as more recent announcements
such as Nissan’s [17] there are autonomous vehicles across Amer-
ica, Europe, and Japan. Adopting vehicle scenarios as the chosen
context provides an appropriate challenge for the simulation frame-
work (i.e. high message rates and timeliness of message delivery)
as well as a rich information context (i.e. higher level knowledge
vs low level sensor feeds) with which to assess the application of
both BDI agents and institutional frameworks.

Following the construction of a suitable simulation framework,
and with the autonomous vehicle context in mind, two scenarios are
put forward in Section 5 to explore the use of norms in the vehicle
domain. The first investigates the use of an institution to trans-
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form a visual cue of a vehicle behind flashing its lights (request-
ing that the vehicle ahead moves to another motorway lane) to an
obligation to change lane. The second explores the use of upcom-
ing traffic light data based on a vehicle’s current route and speed,
and the use of an obligation to adjust speed in order to arrive at
that light whilst it is green. Clearly, both such behaviours could be
pre-loaded into the agent: the institution appears superfluous; our
point is that such an argument can be made for every such scenario,
which would lead to agents carrying a lot of plan baggage which
may be rarely used and which, being embedded in the agent, is not
readily revisable, furthermore, there will also always be scenarios
not foreseen when the agent was constructed. Our position there-
fore, and what this paper seeks to demonstrate, is that through the
delivery of obligations, institutions provide a mechanism for out-
sourcing agent knowledge of conventional and regulated situations,
while permitting ready update and the provision of new knowledge
on an as-needed basis [21]. Subsequently, we analyse some of the
metrics collected from these scenarios in Section 6, which indicate
a positive impact on fuel consumption. There is also some early
indication that traffic flow can be improved, however further work
is needed to establish and quantify this benefit using more realistic
and demanding scenarios, as we outline in Section 7.

2. RESEARCH BACKGROUND
Whilst this work draws on a number of different research areas,

the core theme is that of Situational Awareness. Formally, Endsley
[14] defines this as “the perception of the elements in the environ-
ment within a volume of time and space, the comprehension of
their meaning and the projection of their status in the near future”
and this forms the basis of three levels of SA: perception, compre-
hension and projection. These levels are drawn on as knowledge
representation levels within the framework and experimentation of
work presented here. ‘Low level’ information is considered as the
perception level (e.g. a traffic light x-y location), and as reasoning
and data fusion is performed the information rises through the lev-
els, firstly comprehension (e.g. distance to that traffic light from
current position), through to projection (e.g. affect that light will
have on vehicle given current speed and state of light).

With vehicles containing increasing technology in terms of driver
aids and safety systems work has also been taking place to consider
how cooperation between vehicles, based on V2V communication,
could be beneficial. Coordination in terms of vehicle platooning or
convoy behaviour has been receiving attention. The SAfe Road
TRains for the Environment (SARTRE) study [6] demonstrated
the ability of vehicles to form an effective convoy when follow-
ing a designated lead vehicle, identifying benefits (e.g. time, fuel)
and considering the real world implications of such message ex-
change. Given the physical limits encountered when using real
networks in V2V communication [7] this provides motivation to
explore whether we can communicate less via exchange of higher
level information, and still provide acceptable knowledge transfer
and performance. Such an approach is explored in the second sce-
nario presented in this paper, which relates to the ‘projection’ as-
pect of SA based on traffic light state to future vehicle state. Par-
ticularly relevant to the first scenario put forward in this paper, Bil-
strup [8] considers emergency vehicle routing, where V2V messag-
ing is used to coordinate clearing a path for emergency vehicles.

Regarding vehicle coordination in relation to traffic lights, work
has been undertaken [18] to implement communication between
traffic lights and vehicles, in order to improve fuel consumption
and reduce emissions. Similarly, a recent news announcement [30]
provided details of Audi vehicles retrofitted with new technology
interacting with traffic lights, in order to improve traffic flow. CO2

emission reductions of up to 15 percent are claimed, along with a
potential 900 million litre fuel saving per year if the system were
implemented throughout Germany, but no precise details of the
simulation or the methodology are given, so it is not clear how the
figures might be verified.

The use of institutions as a mechanism to provide norms in the
absence of a clear individual choice, or as an enforcement mecha-
nism contrary to the individual’s choice, has been explored in con-
texts where an individual gains at the expense of peers [4], a sce-
nario which can be easily applied to the vehicle domain. Further-
more, the possibility for multiple institutions to interact [12] (e.g
obeying a traffic light vs. moving out of the way of an emergency
vehicle) characterises scenarios where human drivers may struggle
to resolve the situation. Indeed, the topic of human drivers inter-
acting with autonomous vehicles will create even more challenges,
and whilst thought has gone into what such hybrid interactions may
look like (e.g. traffic light systems [13]) we believe there is a role
for institutions in facilitating this integration as externally verifiable
repositories of normative (conventional and regulatory) knowledge.

Considering specifically traffic situations, we have identified sev-
eral future scenarios where the use of institutions could be of ben-
efit. One such use could be to enforce variable speed limits, a tech-
nique currently implemented through the use of road signs with
speed cameras as the enforcement mechanism. The benefits of such
approaches have been assessed, for example on the M42 [25] and
M25 [29] motorways in the UK, with findings [29] that whilst some
objectives have been met (smoother traffic flow, journey time reli-
ability) others have not (no increase in peak throughput, unable to
suppress shock waves). As traffic conditions are difficult to repli-
cate (e.g. day of the week, weather) it becomes challenging to per-
form like-for-like comparisons in the real world, and therefore hard
to infer a direct benefit for a specific scenario. However, it seems
generally accepted that such traffic control measures have benefits
in smoothing traffic flows post accidents, and limit recurrence of
congestion. This raises two points of interest specific to the sim-
ulation framework adopted in this paper. Firstly, that as the work
is simulation based, like-for-like comparisons are feasible, as the
same simulation conditions can be recreated many times. Secondly,
that the unpredictability of human reaction and compliance is re-
moved. Although institution obligations do not necessarily have to
be obeyed, for variable speed limit compliance this could be more
rigidly enforced, and thus identify what degree of compliance is re-
quired for the mechanism to achieve the intended effect, for exam-
ple. In this case, the question of whether assessment of real world
flow results is based on drivers complying with the speed limit is
removed, and instead we see a more true (or arguably, idealized)
view of what the impact would be.

Whilst the obligation received from the institution may not nec-
essarily be obeyed, they can be considered as guidance for what to
do in a given set of circumstances[2, 5, 22]. As such, this work
also has a relationship with the field of collaborative behaviour be-
tween agents. Earlier scenarios focussed on convoy management
using vehicle proximity data: we now considered this as an in-
stitutionally managed activity, in contrast to other coordination ap-
proaches (e.g. [27]). There is the aspiration that similar benefits can
be demonstrated by self-organising vehicle collectives [15] for im-
proved traffic flow and fuel savings via the institutional approach.

Having introduced the context and motivation for this work, the
simulation framework which has been constructed to investigate the
vehicle scenarios is now presented.

3. SIMULATION FRAMEWORK
The simulation framework has been designed with distribution
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Figure 1: Bath Sensor Framework (BSF) overview

and a de-coupled approach to system component interoperability
in mind [20]. The Extensible Messaging and Presence Protocol
(XMPP) includes support for a publish-subscribe mechanism, al-
lowing simulation members to publish without an overhead of man-
aging consumers. Combined with the Resource Description Frame-
work (RDF) specification, this data then includes a level of seman-
tic annotation, providing subscribers with both the data and a def-
inition along with it. Built around this, the Bath Sensor Frame-
work (BSF) provides an ‘out of the box’ capability (opensource at
http://code.google.com/p/bsf/) with various components based on
the publish-subscribe approach. Some of these are fairly generic in
nature (a database logger for RDFs, a replay tool to recreate events
from database logs, performance testing tools), whereas others are
more specific to the vehicle scenarios explored here (a 3D world
view tool based on OpenStreetMap data, the Jason BDI engine).

The BSF aims to be a generic framework that has also been used
to support intelligent agents controlling avatars in Second Life [21]
and retro-fitted to the football scenario irst described in [26] (also
in Second Life), as well as supporting the real-time collection and
presentation of sensor data [11]. Earlier work on traffic simulation
based on the BSF [3], presented a number of scenarios exploring
communication between vehicles when acting as a convoy, inves-
tigating acceptable convoy performance while reducing the inter-
vehicle communication, based on varying strategies. Discussion
of new scenarios follow in the next section, but there have been
substantial developments specific to the simulation framework. A
schematic presentation of the BSF modules supporting the work
described here is given in Figure 1.

Vehicle simulation is now performed by the ‘Simulation of Ur-
ban MObility’ (SUMO) [19] package, whereas previously the sim-
ulation was limited in terms of individual vehicle simulation, ad-
herence to road networks and their rules, as well as general traffic
representation. Through the use of a Java API, vehicle informa-
tion is extracted and published to BSF subscribers, and a number
of vehicle control commands have been implemented such that Ja-
son agents are able to interact with and control SUMO vehicles.
Furthermore, the richer simulation information provided by SUMO
has allowed more investigations around the concepts of Situational
Awareness discussed earlier.

One specific scenario based on this involves reasoning about traf-
fic light data and how light states might impact the future state of

the vehicle. Drawing from Endsley’s ‘projection’ component, the
consideration around how future events will effect an individual
vehicle requires far greater computation. For this reason, a new
simulation component referred to as the ‘Area Of Interest (AOI)’
module has been created. This can be considered as a data fu-
sion engine, subscribing to data published by SUMO, calculat-
ing a vehicles AOI volume (based on current location and speed),
and then publishing AOI RDF data back to the framework. Fur-
thermore, as SUMO is handling vehicle routes, additional reason-
ing can be done based on what will be encountered in this AOI
volume based on the current route, for example publishing up-
coming traffic lights not just in the AOI in general, but that con-
trol lanes along the vehicle’s route. This allows Jason agents to
be able to react to both low level percepts (e.g. +info(PosX,
PosY, PosZ, Health, Heading)) as well as much higher
level (e.g. +upcomingTrafficLight(Colour, Distance)).

However, this improvement in simulation richness also intro-
duces new challenges for the simulation framework itself. It was
discussed in previous work [3] that there were performance differ-
ences dependent on the message volume, although scenarios at that
point were quite lightweight in terms of data demand (four vehi-
cles with one second update rate; four RDF messages per second).
It was also found that when additional (agent mind state) data was
broadcast from Jason, the resulting increase of up to approximately
forty messages per second caused system instability. The introduc-
tion of SUMO leads to the possibility of simulating background
traffic with potentially an increase in message volume by a factor
of one hundred from the four vehicle scenarios used earlier. There
is further complexity, as vehicles now need to exchange route in-
formation, and convey their light state (e.g. indicating, flashing
lights, braking) and their performance metrics (e.g. fuel consump-
tion, CO2 emission). There is also environmental information to be
exchanged, such as traffic light states and flow detectors.

Consequently, there was a significant reworking of the simula-
tion framework, to ensure that it is capable of meeting this require-
ment. An alternative XMPP message server (ejabberd) has been
adopted, which yields significantly improved message throughput.
Coupled with general code improvements, the system is comfort-
ably handling 800 messages a second (over a wireless network).
Due to the importance of message delivery in this framework, part
of the build test now performs checks for message loss and message
transfer rate in order to ensure the deployed hardware and network
configuration performance is acceptable.

Ameliorating the bottleneck in message delivery now reveals
costs in the data serialization task. As previously mentioned, clients
transform data into RDF triples before publishing, but this is rela-
tively expensive. Where semantic annotation is not needed JSON
provides an efficient alternative format, that has been measured as
significantly quicker than RDF due to the improved serialization
performance (along with a wider range of benchmarks [28]). This
bears relevance to the knowledge transfer theme, as it suggests the
possibility to transfer at high volume rates but with little semantic
description (i.e. JSON), or at low volume rates but with additional
semantic definitions and analysis possible (i.e. RDF). In general
we consider this a problem of impedance matching; that publishers
and subscribers need to be matched not just in terms of data rates
but also knowledge richness. For example, it has been found that
there are issues if publishing at high rates to the Jason BDI engine,
and that a lower rate of richer data is more suitable. Conversely,
the 3D viewer is better suited to high rate, low level information
(e.g. position updates) and not so well placed to display high level
information (at least, in a raw format).
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4. INSTITUTIONS
We are motivated to incorporate institutional reasoning into the

simulation framework for two immediate reasons: (i) the breadth
of possible situations requiring resolution between vehicles is too
great to encode prior to runtime, and (ii) to be able to constrain
a vehicle’s sole pursuit of its own goals in order to consider the
greater society of vehicles, through the enforcement of some form
of global obligations.

In the first case, a scenario based on a somewhat ambiguous sit-
uation has been chosen: a vehicle becomes obstructed by a slower
moving vehicle and wishes to get past. To indicate this, the vehi-
cle flashes its front lights, and if this cue is interpreted correctly
by the leading vehicle, it would change lanes in order to yield to
the other vehicle’s desire. With the simulation framework out-
lined in Section 3, the Jason agent is able to refer its requirement
to the institution, updating the institution manager with the event
flashLights(Agent)which in turn generates the institutional
event iniOblChangeLane(Agent). This in turn generates
the obligation obl(changeLane(Agent) which the institution
manager packages as an RDF triple and transmits to the BSF. As
Jason agents are subscribed to the institution node, they receive this
obligation, resulting in that agent’s belief base being updated with
the percept +changeLane, for which the agent can then decide
to issue a command to its SUMO vehicle to move to different lane.

In the second case, an institution was defined to handle informa-
tion regarding upcoming traffic lights, and issuing appropriate obli-
gations to ensure the vehicle arrives at that light when it is green,
rather than being held at a red light1. In this scenario, traffic light
information is received via RDFs from the Area of Interest mod-
ule, and where the distance to an upcoming light is between 100m
to 300m and that light is red, the institution is updated with the
event upcomingRedLight(Agent). This then generates the
institutional event iniOblSlowDown(Agent), resulting in the
obligation obl(reduceSpeed(Agent), which the Jason agent
receives and implements this by reducing its speed for a specified
(35 second) period.

We demonstrate the impact of such institutional obligations in
the experiments that follow.

As noted earlier, such behaviours could easily be encoded di-
rectly, if they were considered as part of the requirements, but this
necessitates both fore-knowledge of the requirement and that it is
fixed. We regard the mixed driving scenario as one example of the
rich variety of socio-cognitive systems, populated by humans and
software, mediated by technological artefacts, that are now emerg-
ing, where new requirements arise over time and old requirements
change, rendering conventional software engineering approaches
obsolete. Institutions are one way to provide a form of late bind-
ing of behaviour in order to address this issue. As also noted else-
where, multiple institutions, while inevitably risking the creation of
conflicting obligations [23], further enrich the environment, while
keeping knowledge separated but linked [12].

5. EXPERIMENTAL SCENARIOS
Initial work using this framework focussed on information ex-

change in vehicle convoys, and explored the impact of various com-
munication strategies on convoy performance. However, as dis-
cussed in the previous section, there were some limitations on what
was simulated in those scenarios. Now with the improved vehi-
cle and traffic simulation, coupled with improved message transfer
capability, more advanced scenarios have been constructed.

Focus is on the use of a normative framework to control aspects
1Inspired by the earlier cited Audi news item [30]

Figure 2: Scenario 1 M25 Motorway

of the vehicles, motivated by two factors. Firstly, while the BDI
approach has been found to be robust in the vehicle domain, a
combination with an institutional framework provides greater flex-
ibility. The BDI agents are able to perform plan selection based
on their belief state, with the added layer of the institution acting
as a late binding mechanism, able to influence the agents ultimate
approach. Secondly, the BDI agents are vehicle-centric in their
view of goal achievement (i.e. pursuing their individual goals with-
out concern regarding benefits for the society of vehicles), and the
use of the institution model allows us to introduce a more society-
centric consideration. For example, the institution can issue obli-
gations to slow down to vehicles, in order to improve traffic flow
for the greater population of vehicles, a method already in use via
variable speed limits, as discussed earlier in Section 2.

Due to this shift in scenario focus, results no longer focus purely
on underlying message metrics and convoy cohesion. Instead, there
are now measurements of individual vehicle performance metrics
(e.g. fuel consumption, emissions), as well as global metrics (e.g.
flow volume, average speeds). Videos of scenario runs are also
made available.

Two scenarios have been constructed to explore the impact of the
introduction of the institution framework, which are now discussed
in more depth.

5.1 Scenario 1: ‘Move out of way’ obligation
This scenario explores the ability of the institution to issue obli-

gations based on the needs of other users in the road system, which
may be contrary to the desire of individual vehicles. Currently, this
is demonstrated through the use of two vehicles along a section
of the M25 motorway in the UK. Flow traffic has been populated
in SUMO, based on data from the UK Highways Agency Traffic
Flow Database System (TRADS [1]), for this road section in order
to provide a representation of background traffic flow. A snapshot
of the scenario can be seen in Figure 2 where background traffic is
yellow vehicles, and Jason controlled vehicles are red.

In the scenario context shown in Figure 2, a leading vehicle (V1)
is travelling slightly slower than a trailing vehicle (V2), and as V2
wishes to maintain its speed without changing course (i.e. moving
to another lane to overtake) it gains on V1. As the vehicles near
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each other, the Area Of Interest (AOI) module informs vehicles of
other vehicle locations in their AOI volume. The Jason agents then
perform a finer granularity check using their perceived collision
volume space (directly in front), and determine whether another
vehicle is in this space, along with distance to that vehicle. As V2
gains on V1, this behaviour is triggered, and if V1 is between 60m
to 40m ahead, V2 will flash its lights at V1. With the institution
running, V1 is issued an obligation to change lane, and perform
this request. Without the institution, V2 will continue to gain on
V1, and below 40m V2 will brake hard in order to avoid a collision.
In this case, once V1 is detected as leaving the collision volume,
V2 increases speed again, and a cyclical catch up – slow down
behaviour is expected.

Such a scenario has applications elsewhere in the road domain,
for example an emergency vehicle can create a similar requirement
to move past.

5.2 Scenario 2: React to likely future events
This scenario explores the ability of agents to reason about future

states of the environment in which they operate. Specifically, given
a current route, what bearing the future state of traffic lights will
have on that agent.

In this case, similarly to the previous scenario, the AOI module
detects any traffic lights within the AOI volume. Upon detection, a
route analysis determines whether any of these traffic lights control
a lane on that route. If so, then the institution is informed about
the traffic lights current colour state, and the distance to that light.
Based on this, the institution is able to issue an obligation to reduce
speed, so as to arrive at that light when it is green rather than red.

As discussed earlier, there are some similarities to the system
produced by Audi [30]. However, in the scenario implemented
here, the speed modification is enforced in order to assess the im-
pact on the larger vehicle population, as well as the individual vehi-
cle. Parallels can be seen with mechanisms such as variable speed
limits on motorways discussed previously.

The route taken in this scenario is shown in Figure 3, with some
annotation added to explain key areas. The ‘START’ and ‘END’
locations correspond to the area on the map where the vehicle is in-
serted, and location when the simulation is finished. The numerical
labels refer to the three junctions controlled by traffic lights located
along this route.

The results of these scenarios are now presented.

6. RESULTS
This section presents results for the two scenarios discussed in

the previous section, comprising of a baseline without institution
involvement, and with institution issued obligations.

6.1 Scenario 1
In this scenario, there were two configurations for the experi-

ments. The first, with the institution inactive, involves vehicle 2 ap-
proaching vehicle 1 until a distance threshold triggers a hard brake
(in order to avoid a collision). Once vehicle 1 has left the collision
volume, vehicle 2 returns to the previous speed and so begins to
gain on vehicle 1 again. The second, is with the institution active,
which issues an obligation to vehicle 1 to change lane before the
need for a sudden brake occurs.

In Figure 4 we can see the fuel consumption profiles of the two
Jason controlled vehicles in this scenario, with the two variations of
having the institution active and inactive. To clarify, V1 produces
the same result with and without the institution, V2 only shows
variation between 45 to 50 seconds. In both cases, Vehicle 2 has a
slightly higher fuel consumption rate, as it is travelling at a higher

Figure 3: Scenario 2 Bath City Centre
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speed than Vehicle 1. Ignoring initial fluctuations (as the simulation
moves to steady state), we can see the main, and only, perturbation
occurs in V2 at approximately 45 seconds. This is the point where
it has got too close to the vehicle ahead (as there is no response to
flashing its headlights) and has to brake. After about 5 seconds the
vehicle ahead has moved out of its collision zone, and resumes its
previous speed.

By comparison, with the institution issuing the obligation to change
lane, the need to reduce speed is removed, and as such the fuel
consumption profile remains constant. Fuel consumption is cur-
rently implemented in SUMO based on the Handbook Emission
Factors for Road Transport (HBEFA) model, and with the motor-
way scenario it has been found that there is largely linear correla-
tion between speed and fuel consumption. As such, the impact of
excessive braking and acceleration is not captured in the fuel met-
ric, however there is development effort under way to implement
an alternative model in SUMO, which would result in more realis-
tic – and, for the institutionally governed experiment, improved –
figures for this scenario.

With the background traffic flow present, there is the desire to
measure a more global metric rather than focussing on individual
vehicles, in order to ascertain the impact of the behaviour of V1
and V2 on the general population. In order to achieve this, each
vehicle reports its position along the scenario route along with its
current speed and distance to the vehicle ahead. This provides an
indication of disruption to the average speed (i.e. a vehicle having
to slow down) and congestion (i.e. vehicles close together).

The results reported by this set of measurements can be seen in
Figure 5, with results of the scenario with and without the institu-
tion involvement. The clearest result here is shown in the bottom
graph, where with no institution running the vehicle speed at ap-
prox 600m along the route drops to nearly 20mph. This has oc-
curred where V2 had to brake after getting too close to V1, and
so expected vehicle speeds at this point in the route are affected.
The upper graph of vehicle gaps is less conclusive in this particular
scenario. There is clearly some difference when the institution is
active, which could be as V1 changed lane, the gap ahead of V2
is now measured to the vehicle which was ahead of V1, and so we
see a different profile here. Further work is planned to refine these
measurements, and to incorporate other lanes (e.g. as V1 changes
lane, what impact to we see in the lane it moves into).

6.2 Scenario 2
In this scenario, two experimental variations are reported. Firstly,

a baseline where the vehicle is given its route, and SUMO handles
speed control. In this case, the vehicle will obey the appropriate
speed restriction for that road, and slow down, if required to, for
events such as turns at junctions.

It can be seen in the ‘no institution’ results of Figure 6 that there
is a significant variation in fuel consumption usage. The vehicle
initially accelerates to the appropriate speed for that road, with its
fuel use remaining constant until it arrives at junction 1, which is on
a red light. The vehicle comes to a stop at this light and idles for five
seconds, until the light turns green. The vehicle then accelerates
and arrives at the second junction which is also on a red light. This
light changes to green before the vehicle starts to idle, at which
point the vehicle accelerates again and arrives at the third junction.
The vehicle slows as this is a left hand turn, before reaching the
‘END’ location at approximately ninety seconds.

In comparison, the ‘with institution’ results in Figure 6 show a
clearly different profile, due to the different chain of events caused
by the institution involvement. In this case, at 15 seconds the insti-
tution issues the obligation obl(reduceSpeed(Agent)), re-
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sulting in the vehicles speed being reduced for 35 seconds. At 55
seconds this action is completed, and so the vehicle increases its
speed back to the road limit. However, the vehicle arrives at junc-
tion 1 while the light is green, and so does not waste fuel idling or
having to perform acceleration from stationary. The vehicle then
passes through junction 2 as well, and at 85 seconds reduces speed
for the turning at junction 3. This is followed by a spike in fuel
consumption to increase speed, and approximately 95 seconds the
vehicle arrives at the ‘END’ location.

Whilst the individual fuel consumption profiles are useful to ex-
plore in relation to events in each scenario, a more substantial result
can be found when taking the cumulative fuel consumptions for non
institution and institution variants of this scenario. The results of
this are shown in Figure 7.

Here a direct comparison of the results presented in Figure 6 can
more easily be made, and there are some key findings to draw out.
Firstly, despite the fact that the institution has enforced a slower
speed on the vehicle for a significant duration of the scenario, the
vehicle arrives at almost the same time (3 seconds difference) in
both variations. However, in the institution variant of the scenario,
there is almost 20ml less fuel used, approximately 10 percent less.
As there is a correlation between emissions and fuel consumption,
this also signifies that there is a significant reduction in CO2.

7. DISCUSSION AND FUTURE WORK
In essence this work is an investigation into knowledge repre-
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sentation and transmission across a distributed platform, set in the
context of intelligent vehicle systems. By performing elements of
data fusion, and allowing components within the system to sub-
scribe to their desired information source, we explore the question
of whether it becomes possible to understand more, but commu-
nicate less. This ethos carries through the various system com-
ponents, for example the ability of the 3D viewer to represent both
environment spatial information through to agent mind state beliefs
and plans.

Specific to the use of norms, the aspiration is to reduce the bur-
den of coding for every eventuality, by aggregating data to suitable
levels and triggering more powerful plans and actions based on this.
Rather than Jason agents having to reason about their physical spa-
tial state in relation to upcoming traffic lights, they receive more
appropriate belief updates at a higher level. Similarly the institu-
tion does not have to micro-manage vehicle speed, instead it issues
a higher level obligation to slow down, and leaves this to the vehicle
to resolve appropriately.

To explore the benefits of such functionality, the two scenarios
demonstrate areas where human drivers struggle with uncertainty
in the selection of appropriate actions, both for their own benefit,
and (with even more difficulty) what to do for the greater collective
benefit. In these cases, a single institution has been shown in each
scenario as being capable of resolving, and improving, the situa-
tion.

Results from the first scenario of a vehicle moving out of the
way of another vehicle show a clear variation in fuel consumption,
though a less clear overall impact of this to the wider vehicle pop-
ulation. The results generated so far highlight a localised decrease
in speed, and some impact on gaps between vehicles. However,
further refinement is needed in order to identify factors such as the
number of vehicles affected and duration of the disruption. Further-
more, the new fuel consumption model planned for SUMO will be
used to reassess the fuel consumption expectations of the excessive
brake-accelerate behaviour in this scenario.

Results from the second scenario show a benefit to the individual
vehicle adopting the institutions obligations. By reducing that ve-
hicles speed (to the detriment of the apparent benefit of arriving at
its destination faster) both fuel consumption and emissions are re-
duced. This scenario will also be expanded to include background
traffic, as well as the complexity of how to manage multiple traf-
fic lights, which may then become a minimisation problem (also
suitable for resolution by some software component).

Having produced results which indicate there is a useful role as
well as quantifiable benefit for institutions in governing a future of
autonomous vehicles, further experimentation is planned. A sce-
nario of global vs local Variable Speed Limit implementation (e.g.
in managing congestion following the excessive braking of scenario
1) is currently being implemented, as well as post accident manage-
ment (e.g. lane one vehicles required to merge with lane two which
will provide richer scenarios from which to assess the benefit of
multiple institution interactions.
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ABSTRACT
Demand-responsive transport (DRT) systems provide flexi-
ble transport services for passengers that request door-to-
door rides in shared-ride mode without fixed routes and
schedules. One has to design cost-sharing mechanisms for
offering fare quotes to potential passengers so that all pas-
sengers are treated fairly. The main issue is how the oper-
ating costs of the DRT system should be shared among the
passengers (given that different passengers cause different
amounts of inconvenience to the other passengers), taking
into account that DRT systems should provide fare quotes
instantaneously without knowing future ride requests. We
propose a novel cost-sharing mechanism, called Proportional
Online Cost Sharing (POCS), that provides passengers with
upper bounds on their fares immediately after their arrivals,
allowing them to accept their fare quotes or drop out. We
then demonstrate that POCS has attractive properties for
both shuttle providers and passengers.

1. INTRODUCTION
Demand-responsive transport (DRT) systems provide

flexible transport services where individual passengers re-
quest door-to-door rides by specifying their desired start and
end locations. Multiple shuttles service these requests in
shared-ride mode without fixed routes and schedules. DRT
services are more flexible and convenient for passengers than
buses since they do not operate on fixed routes and sched-
ules, yet are cheaper than taxis due to the higher utilization
of transport capacity. In the United States, DRT services
are commonly used to service the transport needs of disabled

∗A longer version of this paper is under submission to the
IEEE Transactions on Intelligent Transportation Systems.
This paper was therefore submitted to this non-archival
workshop purely for the exchange of ideas. Our research
was supported by METRANS grant 09-19 via the Califor-
nia Department of Transportation and follow-up contract
DTFH61-10-C-00030 from the Federal Highway Administra-
tion under the Broad Agency Announcement of Exploratory
Advanced Research (EAR).

and elderly citizens and have experienced rapid growth, for
example, in the form of dial-a-ride paratransit services man-
dated under the Americans with Disabilities Act, while the
National Transit Summaries and Trends report that typical
DRT systems are highly subsidized.

In this paper, we propose a novel cost-sharing mechanism,
called Proportional Online Cost Sharing (POCS), that pro-
vides passengers with upper bounds on their fares immedi-
ately after their arrivals, allowing them to accept their fare
quotes or drop out. We then demonstrate that POCS has
attractive properties for both shuttle providers and passen-
gers. How passengers should share the operating cost in an
online setting, where knowledge of future ride requests is
missing, is a non-trivial problem for the following reasons:
First, passengers do not submit their ride requests at the
same time but should be given incentives to submit their
ride requests as early as possible to allow the DRT systems
more time to find routing solutions that can offer subsequent
passengers lower fares due to synergies with the early ride re-
quests, which might allow them to service more passengers.
Second, passengers have different start and end locations
and thus cause different amounts of inconvenience to the
other passengers, which should be reflected in the fares. Fi-
nally, passengers should be quoted fares immediately after
submitting their ride requests. This gives passengers cer-
tainty about the cost of service and allows the DRT system
to plan routes better knowing which passengers have com-
mitted to participate. This requires DRT systems to make
instantaneous and irreversible decisions despite having no
knowledge of future ride requests [2].

2. ONLINE COST SHARING
In this section, we define the online cost-sharing problem

for demand responsive transport (DRT) systems, provide
an example, discuss existing cost-sharing mechanisms and
some of their shortcomings, and finally derive a list of desir-
able properties for online cost-sharing mechanisms for DRT
systems.

2.1 Problem Definition
DRT systems provide flexible transport services where

individual passengers request door-to-door rides. Multi-
ple shuttles service these requests without fixed routes and
schedules. Passengers share shuttles. For example, after a
passenger has been picked up and before it is dropped off,
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other passengers can be picked up and dropped off, result-
ing in a longer ride for the passenger. Passengers need to
pay a share of the operating cost. Passengers arrive (that
is, submit their ride requests) one after the other by speci-
fying their desired start and end locations. The arrival time
of a passenger is the time when it submits its ride request.
In case the passenger decides to delay its arrival, we distin-
guish its truthful arrival time, which is its earliest possible
arrival time, from its actual, perhaps delayed, arrival time.
We assume, for simplicity, that all passengers arrive before
the shuttles start to service the passengers. We also assume,
without loss of generality, that exactly one passenger arrives
at each time k = 1, . . . , t, namely that passenger π(k) arrives
at time k under arrival order π, where an arrival order is a
function that maps arrival times to passengers.

Definition 1. For all times k and all arrival orders π
with 1 ≤ k, the alpha value απ(k) of passenger π(k) quan-
tifies the demand of its request, that is, how much of the
transport resources it requests. We assume that it is positive
and independent of the arrival time of the passenger.

These assumptions are, for example, satisfied for the
shortest point-to-point travel distance from the start loca-
tion to the end location of a passenger, which is the quantity
that we use in this paper as its alpha value.

Definition 2. For all times t and all arrival orders π
with 1 ≤ t, the total cost totalcosttπ at time t under ar-
rival order π is the operating cost required to service pas-
sengers π(1), . . . , π(t). We define totalcost0π := 0 and as-
sume that 1) the total cost is non-decreasing over time,
that is, for all times t and t′ and all arrival orders π with

t ≤ t′, totalcosttπ ≤ totalcostt
′
π ; and 2) the total cost at

time t is independent of the arrival order of passengers
π(1), . . . , π(t), that is, for all times t and all arrival orders π
and π′ with 1 ≤ t and {π(1), . . . , π(t)} = {π′(1), . . . , π′(t)},
totalcosttπ = totalcosttπ′ .

These assumptions are, for example, satisfied for the min-
imal operating cost, which is the quantity that we use in this
paper for the total cost. The DRT system can accommodate
advanced features, such as operating times and capacities of
shuttles and time constraints of passengers, as long as it can
determine total costs that satisfy the assumptions. The as-
sumptions are typically not satisfied if passengers can arrive
after the shuttles have started to service passengers since
the shuttle locations influence the total cost. We initially
assume for simplicity in the theoretical part of this paper
that the DRT system can easily calculate the total cost at
any given time.

Definition 3. For all times k and all arrival orders π
with 1 ≤ k, the marginal cost mcπ(k) of passenger π(k) under
arrival order π is the increase in total cost due to its arrival,
that is, mcπ(k) := totalcostkπ − totalcostk−1

π .

Definition 4. For all times k and t and all arrival orders
π with 1 ≤ k ≤ t, the shared cost costtπ(k) of passenger π(k)
at time t under arrival order π is its share of the total cost
at time t.

The DRT system provides a (myopic) fare quote to a pas-
senger immediately after its arrival. The fare quoted to pas-
senger π(k) immediately after its arrival at time k is costkπ(k).

𝑃2 𝑃1 

𝑃3 

2 2 2 2 

𝑃4 

𝐵 𝐴 𝐶 𝐷 𝐸 

Figure 1: DRT Example 1

Table 1: DRT Values
k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

Alpha Value: απ(k) 2 2 4 2

Total Cost: totalcostkπ 40 120 120 160
Marginal Cost: mcπ(k) 40 80 0 40

(A fare quote of infinity means that the passenger cannot be
serviced.)

Definition 5. For all times k and all arrival orders π
with 1 ≤ k, the fare limit wπ(k) of passenger π(k) is the
maximum amount that it is willing to pay for its requested
ride.

Passenger π(k) drops out and is not serviced if its fare
limit wπ(k) is lower than its fare quote, that is, wπ(k) <

costkπ(k). In this case, the DRT system simply pretends that
the passenger never arrived, which explains why we assume,
without loss of generality, that all passengers accept their
fare quotes. When the passenger accepts its fare quote and
is serviced, its fare is costtπ(k) (which is not guaranteed to
equal its fare quote).

2.2 Demand-Responsive Transport Example
We use the DRT example in Figure 1 to illustrate typi-

cal cost-sharing mechanisms. There is one shuttle that can
transport up to four passengers and starts at the star. The
shuttle incurs an operating cost of 10 for each unit of dis-
tance traveled and needs to return to its initial location.
There are four passengers with arrival order π(1) = P1,
π(2) = P2, π(3) = P3 and π(4) = P4. For example, Pas-
senger P3 requests a ride from location B to location D, as
shown in Figure 1. All passengers accept all fare quotes.
Table 1 shows the alpha value of each passenger, the total
cost after the arrival of each passenger and the marginal
cost of each passenger. For example, the alpha value of Pas-
senger P3 is the shortest point-to-point travel distance from
its start location B to its end location D. Thus, απ(3) = 4.
The total cost at time 3, after the arrival of Passenger P3,
is 10 times the minimal travel distance of the shuttle re-
quired to service Passengers P1, P2 and P3 and return to its
initial locations. Thus, totalcost3π = 120 since the shuttle
has to drive from location A (to pick up Passenger P1) via
location B (to drop off Passenger P1 and pick up Passen-
ger P3) and location C (to pick up Passenger P2) to loca-
tion D (to drop off Passengers P2 and P3) and to return
to its initial location A. The marginal cost of Passenger
P3 is the increase in total cost due to its arrival. Thus,
mcπ(3) = totalcost3π − totalcost2π = 120 − 120 = 0 since the
total cost remains 120.

2.3 Typical Cost-Sharing Mechanisms
Online cost-sharing mechanisms determine the shared

costs in an online setting, where knowledge of future arrivals
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Table 2: Proportional Cost Sharing: costtπ(k)
k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 40
t = 2 60 60
t = 3 30 30 60
t = 4 32 32 64 32

of passengers is missing. We present typical cost-sharing
mechanisms and some of their shortcomings in an online
setting using the DRT example in Section 2.2.

2.3.1 Proportional Cost Sharing
One commonly used cost-sharing mechanism is propor-

tional cost sharing [16, 14], where the total cost is dis-
tributed among all passengers proportionally to their alpha
values, which reflects that passengers with higher demands
should contribute more toward the total cost. Consequently,
for all times k and t and all arrival orders π with 1 ≤ k ≤ t,
the shared cost of passenger π(k) at time t under arrival
order π is

costtπ(k) := totalcosttπ
απ(k)∑t
j=1 απ(j)

.

Instead of distributing the total (operating) cost among all
passengers, one could also distribute the operating cost of
each shuttle among all passengers serviced by that shuttle,
which results in identical properties for the DRT example
in Section 2.2 since there is only one shuttle in the DRT
example.

Table 2 shows the shared costs for the DRT example. For
example, the total cost at time 3 is 120. It is distributed
among all passengers that have arrived by time 3, namely
Passengers P1, P2 and P3, proportionally to their alpha val-
ues, namely 2, 2 and 4, respectively. Consequently, the
shared cost of Passenger P3 at time 3 and thus the fare
quoted to Passenger P3 after its arrival is cost3π(3) = 60.
Similarly, the total cost at time 4 is 160. It is distributed
among all passengers that have arrived at time 4, namely
Passengers P1, P2, P3 and P4, proportionally to their alpha
values, namely 2, 2, 4 and 2, respectively. Consequently, the
shared cost of Passenger P3 at time 4 and thus its fare is
cost4π(3) = 64, implying that its fare is higher than its fare
quote at time 3. This is undesirable because Passenger P3

might accept the fare quote but not the higher fare, mean-
ing that it will have to drop out shortly before receiving its
ride and then needs to search for a last-minute alternative
to using the DRT system, which might be pricy and is not
guaranteed to exist. Thus, we suggest that a fare quote
should be an upper bound on the fare (immediate-response
property). We also suggest that the upper bound should
be reasonably low since passengers might otherwise look for
alternatives to using the DRT system, commit to one and
then drop out unnecessarily. Obtaining reasonably low up-
per bounds can be difficult since the DRT system has no
knowledge of future arrivals of passengers.

2.3.2 Incremental Cost Sharing
Another commonly used cost-sharing mechanism is incre-

mental cost sharing [9], where the shared cost of each pas-
senger is its marginal cost, which is the increase in total cost
due to its arrival. Consequently, for all times k and t and all
arrival orders π with 1 ≤ k ≤ t, the shared cost of passenger
π(k) at time t under arrival order π is

costtπ(k) := mcπ(k).

Table 3 (left) shows the shared costs for the DRT example
in Section 2.2. For example, the marginal cost of Passenger
P3 is 0. Consequently, the shared cost of Passenger P3 from
its arrival at time 3 on is 0, and thus both its fare quote
and fare are 0 as well. In general, incremental cost sharing
satisfies the immediate-response property since the marginal
costs are independent of time. The fares of Passengers P1,
P2, P3 and P4 are 40, 80, 0 and 40, respectively. Thus, Pas-
senger P3 is a free rider, which is undesirable in general and
especially in the context of the DRT example since Passen-
ger P3 has the highest demand, which should be reflected in
the fares. Proportional cost sharing does not suffer from this
problem. For the discussion below, notice that the fare per
alpha value of Passenger P1 is 20 and the one of Passenger
P3 is 0 even though Passenger P1 arrives before Passenger
P3.

Table 3 (right) shows the shared costs for the DRT ex-
ample in Section 2.2 if Passenger P1 delays its arrival and
the passengers arrive in order P2, P1, P3 and P4. Now, the
shared cost of Passenger P1 from its arrival at time 2 on is
0, and thus both its fare quote and fare are 0 as well. Thus,
Passenger P1 can reduce its fare from 40 to 0 by strategi-
cally delaying its arrival. This delay is undesirable because
synergies with the early ride requests allow the DRT system
to offer low fare quotes to new passengers. We therefore
suggest to ensure that the best strategy of every passenger
is to arrive truthfully (that is, as early as possible) because
it cannot decrease its fare by delaying its arrival (incentive-
compatibility property). Incremental cost sharing does not
satisfy this property as shown above. Similarly, under incre-
mental cost sharing, Passenger P1 and P2 prefers to pay the
fare of Passenger P3 rather than their own fare because Pas-
senger P3 enjoys a free ride due to payments of these two
passengers. We therefore suggest that the fares per alpha
value of passengers are never higher than those of passen-
gers that arrive after them (online-fairness property).

2.4 Desirable Properties
None of the cost-sharing mechanisms discussed so far are

well-suited for the DRT problem. Based on their shortcom-
ings, we derive a list of desirable properties for online cost-
sharing mechanism. Our primary objective is to design an
online cost-sharing mechanism that provides incentives for
passengers to arrive truthfully while satisfying basic prop-
erties of cost-sharing mechanism in general, such as fairness
and budget balance.
Online Fairness: The shared costs per alpha value of

passengers are never higher than those of passengers who
arrive after them, that is, for all times k1, k2 and t and all
arrival orders π with 1 ≤ k1 ≤ k2 ≤ t,

costt
π(k1)

απ(k1)
≤
costt

π(k2)

απ(k2)
.

Immediate Response: Passengers are provided imme-
diately after their arrivals with (ideally low) upper bounds
on their shared costs at any future time, that is, for all times
k, t1 and t2 and all arrival orders π with 1 ≤ k ≤ t1 ≤ t2,

costt1
π(k)

≥ costt2
π(k)

.

Individual Rationality: The shared costs of passengers
who accepted their fare quotes never exceed their fare limits
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Table 3: Incremental Cost Sharing: costtπ(k)
Truthful Arrival Delayed Arrival

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4
π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4 π(k) = P2 π(k) = P1 π(k) = P3 π(k) = P4

t = 1 40 120
t = 2 40 80 120 0
t = 3 40 80 0 120 0 0
t = 4 40 80 0 40 120 0 0 40

at any future time, that is, for all times k and t and all
arrival orders π with 1 ≤ k ≤ t,

costtπ(k) ≤ wπ(k).

Budget Balance: The total cost equals the sum of the
shared costs of all passengers, that is, for all times t and all
arrival orders π with 1 ≤ t,

t∑

j=1

costtπ(j) = totalcosttπ .

Ex-Post Incentive Compatibility:1 The best strategy
of every passenger is to arrive truthfully, provided that all
other passengers arrive truthfully as well and do not change
whether they accept their fare quotes or drop out, because it
then cannot decrease its shared cost by delaying its arrival,
that is, for all times k1, k2 and t and all arrival orders π and
π′ with 1 ≤ k1 < k2 ≤ t and

π′(k) =





π(k + 1) if k1 ≤ k < k2
π(k1) if k = k2
π(k) otherwise,

costtπ(k1) ≤ costtπ′(k2).

The online fairness and ex-post incentive-compatibility
properties are similar but one does not imply the other.
Basically, they provide incentives for passengers to arrive
truthfully. Thus, the DRT systems have more time to pre-
pare and might also be able to offer subsequent passengers
lower fares due to synergies with the early ride requests,
which might allow them to service more passengers. The
online-fairness property is also meant to ensure that passen-
gers consider the fares to be fair. The immediate-response

1We would like the ex-post incentive-compatibility property
ideally to state that the best strategy of every passenger
is to arrive truthfully because it cannot decrease its shared
cost by delaying its arrival. However, we impose two condi-
tions in this paper that we hope to be able to relax in the
future. The first condition is that all other passengers arrive
truthfully, which, for example, rules out collusion of several
passengers. In general, the literature on online-mechanism
design [12] distinguishes two types of incentive compatibil-
ity, namely dominant-strategy incentive compatibility and
ex-post incentive compatibility. Dominant-strategy incentive
compatibility does not require the first condition, while ex-
post incentive compatibility does. Dominant-strategy incen-
tive compatibility is difficult to achieve in an online setting
[12], which is why we impose the first condition in this pa-
per. The second condition is that the other passengers do
not change whether they accept their fare quotes or drop
out, even though, for example, the delayed arrival of a pas-
senger could cause the fare quotes of subsequent passengers
to increase, which might make them drop out. The arrival
orders with and without the delayed arrival of the passen-
ger are then difficult to relate, which is why we impose the
second condition in this paper.

property enables DRT systems to provide fare quotes, in
form of upper bounds on the fares, to passengers immedi-
ately after their arrivals despite missing knowledge of future
arrivals of passengers. Thus, passengers have no uncertainty
about whether they can be serviced or how high their fares
will be, while the DRT systems reduce their uncertainty
about passengers dropping out and can thus prepare bet-
ter. Yet, the DRT system still retains some flexibility to
optimize the routes and schedules after future arrivals of
passengers. The budget-balance property guarantees that
the sum of the fares of all passengers always equals the total
cost. Thus, no profit is made and no subsidies are required.

We stated sufficient rather than necessary conditions for
the properties. For example, the budget-balance property
could be weakened to state that the total cost equals the
sum of the shared costs of all passengers after the arrival of
the last passenger. Requiring the properties to be satisfied
at any time rather than only after the arrival of the last pas-
senger simplifies the development of the online cost-sharing
mechanism since they do not know in advance when the last
passenger arrives.

3. POCS
In this section, we describe a novel online cost-

sharing mechanism, called Proportional Online Cost Sharing
(POCS), which satisfies the properties listed in Section 2.4,
as proved in the technical report [4]. The idea behind POCS
is the following: POCS partitions passengers into coalitions,
where coalitions contain all passengers that arrive within
given time intervals (rather than, for example, all passengers
served by the same shuttle). Initially, each newly arriving
passenger forms its own coalition. However, passengers can
choose to form coalitions with passengers that arrive directly
after them to decrease their shared costs per alpha value,
which implies the online fairness, immediate response, and
ex-post incentive-compatibility properties. For example, the
immediate-response property is satisfied because passengers
add other passengers to their coalitions only when this de-
creases their shared costs per alpha value and thus also their
shared costs (since the alpha values are positive).

3.1 Calculation of Shared Costs
We now describe how POCS calculates the shared costs.

Definition 6. For all times k1, k2 and t and all arrival
orders π with k1 ≤ k2 ≤ t, the coalition cost per alpha value
of passengers π(k1), . . . , π(k2) at time t under arrival order
π is

ccpaπ(k1,k2) :=

∑k2
j=k1

mcπ(j)
∑k2
j=k1

απ(j)
.

Definition 7. For all times k and t and all arrival orders
π with k ≤ t, the shared cost of passenger π(k) at time t

Proceedings of 8th International Workshop on Agents in Traffic and Transportation ATT 2014

43



under arrival order π is

costtπ(k) := απ(k) min
k≤j≤t

max
1≤i≤j

ccpaπ(i,j).

3.2 Other Cost-Sharing Mechanisms
The following definition and lemma, whose proof is pro-

vided in the technical report [4], helps to understand the
similarities between POCS and other cost-sharing mecha-
nisms. It states that the shared costs per alpha value of all
passengers in any coalition are always identical and equal to
the coalition cost per alpha value of the coalition.

Definition 8. For all times k1, k2 and t and all arrival
orders π with k1 ≤ k2 ≤ t, a coalition (k1, k2) at time t is a
group of passengers π(k1), . . . , π(k2) with

costt
π(k)

απ(k)
=
costt

π(k1)

απ(k1)

for all times k with k1 ≤ k ≤ k2 and the preceeding equality
not holding for all times k with (k = k1 − 1 or k = k2 + 1)
and 1 ≤ k ≤ t.

Lemma 1. The shared cost per alpha value of any passen-
ger in any coalition at any time equals the coalition cost per
alpha value of the coalition, that is, for all times k1, k, k2
and t and all arrival orders π with 1 ≤ k1 ≤ k ≤ k2 ≤ t such
that (k1, k2) is a coalition at time t,

costt
π(k)

απ(k)
= ccpaπ(k1,k2).

Lemma 1 implies that POCS is a combination of pro-
portional and incremental cost sharing. The sum of the
marginal costs of all passengers in any coalition (“the total
cost of all passengers in the coalition”) at time t is distributed
among all passengers in the coalition proportionally to their
alpha values since, for all times k1, k, k2 and t and all ar-
rival orders π with k1 ≤ k ≤ k2 ≤ t such that (k1, k2) is a
coalition at time t,

costtπ(k)
Lem.1
= απ(k)ccpaπ(k1,k2)

Def.6
= απ(k)

∑k2
j=k1

mcπ(j)
∑k2
j=k1

απ(j)

=




k2∑

j=k1

mcπ(j)


 απ(k)∑k2

j=k1
απ(j)

,

which is similar to proportional cost sharing where the total
cost (of all passengers) is distributed among all passengers
proportionally to their alpha values.

The sum of the shared costs of all passengers in any coali-
tion (“the shared cost of the coalition”) at time t equals
the sum of the marginal costs of all passengers in the coali-
tion (“the marginal cost of the coalition”) at the same time
since, for all times k1, k2 and t and all arrival orders π with
k1 ≤ k2 ≤ t such that (k1, k2) is a coalition at time t,

k2∑

j=k1

costtπ(j)
Lem.1
= ccpaπ(k1,k2)

k2∑

j=k1

απ(j)

Def.6
=

∑k2
j=k1

mcπ(j)
∑k2
j=k1

απ(j)

k2∑

j=k1

απ(j)

=

k2∑

j=k1

mcπ(j),

𝑃3 

𝑃1 

𝑃2 

1 
1 

1 𝐵 𝐴 𝐶 𝐷 𝐸 1 1 

𝐹 

Figure 2: DRT Example 2

Table 4: POCS: ccpaπ(k1,k2)
k2 = 1 k2 = 2 k2 = 3 k2 = 4

π(k2) = P1 π(k2) = P2 π(k2) = P3 π(k2) = P4

k1 = 1 π(k1) = P1 20 30 15 16
k1 = 2 π(k1) = P2 40 13 1/3 15
k1 = 3 π(k1) = P3 0 6 2/3
k1 = 4 π(k1) = P4 20

which is similar to incremental cost sharing. where the
shared cost of a passenger is its marginal cost. It also im-
plies the budget-balance property since summing over all
passengers in all coalitions is identical to summing over all
passengers and the sum of the marginal costs of all passen-
gers equals the total cost.

3.3 Illustration
Table 4 shows the coalition costs per alpha value for the

DRT example in Section 2.2. The coalition costs per alpha
value are used to calculate the shared costs, shown in Ta-
ble 5. The shared costs, in turn, are used to calculate the
shared costs per alpha value, shown in Table 6, by dividing
the shared costs by the alpha values, shown in Table 1. For
example, at time 4, Passengers P1, P2 and P3 form a coali-
tion (since their shared costs per alpha value are equal),
and Passenger P4 forms a coalition by itself. The sum of
the marginal costs of the three passengers in the first coali-
tion (“the total cost of all passengers in the coalition”) is
120 and is distributed among all passengers in the coalition
proportionally to their alpha values, namely 2, 2 and 4, re-
spectively. Consequently, the shared cost of Passenger P3

at time 4 and thus its fare is cost4π(3) = 60. Table 6 shows
that the shared costs per alpha value in each row are mono-
tonically non-decreasing from left to right, corresponding to
the online-fairness property. Table 5 shows that the shared
costs in each column are monotonically non-increasing from
top to bottom (and consequently Table 6 shows that the
shared costs per alpha value have the same property), cor-
responding to the immediate-response property. Table 5 also
shows that the sum of the shared costs in each row equals
the total cost at the corresponding time, corresponding to
the budget-balance property.

3.4 Ex-Post Incentive Compatibility
We use the DRT example in Figure 2 to illustrate that

POCS does not satisfy the ex-post incentive-compatibility
property if the second condition (namely that the other pas-
sengers do not change whether they accept their fare quotes
or drop out) is removed. There is one shuttle that can trans-
port up to four passengers and starts at the star. The shut-
tle incurs an operating cost of 10 for each unit of distance
traveled and needs to return to its initial location. There
are three passengers. Passengers P1 and P3 accept all fare
quotes, while Passenger P2 accepts all fare quotes up to 60.
Assume that the passengers arrive in order P1, P2 and P3.
First, Passenger P1 arrives, receives a fare quote of 60 and
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Table 5: POCS: costtπ(k)
k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 40
t = 2 40 80
t = 3 30 30 60
t = 4 30 30 60 40

Table 6: POCS: costtπ(k)/απ(k)
k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 20
t = 2 20 40
t = 3 15 15 15
t = 4 15 15 15 20

accepts it. Second, Passenger P2 arrives, receives a fare
quote of 50 and accepts it. Third, Passenger P3 arrives,
receives a fare quote of 50 and accepts it. In the end, Pas-
sengers P1, P2 and P3 are serviced with fares of 25, 25 and
50, respectively. Now assume that Passenger P1 delays its
arrival, and the passengers arrive in order P2, P3 and P1.
First, Passenger P2 arrives, receives a fare quote of 80 and
drops out since the fare quote exceeds its fare limit of 60.
Second, Passenger P3 arrives, receives a fare quote of 40 and
accepts it. Third, Passenger P1 arrives, receives a fare quote
of 20 and accepts it. In the end, Passengers P1 and P3 are
serviced with fares of 20 and 40, respectively. Thus, Passen-
ger P1 managed to decrease both its fare quote and fare by
delaying its arrival since this caused Passenger P2 to drop
out.

4. EXPERIMENTAL ANALYSIS
We have proved that POCS satisfies five properties that

make DRT systems more attractive to both shuttle providers
and passengers, provided that our assumptions are satisfied.
For example, Definition 2 assumes that the total cost satis-
fies two properties that hold for the minimal operating cost,
which is therefore the quantity that we have used so far
for the total cost. Calculating the minimal operating cost
is typically an NP-hard problem and thus time-consuming.
However, DRT systems need to calculate the minimal op-
erating cost every time a ride request is submitted, which
would prevent them from operating in real-time. We thus
present an experimental study with a transport simulation
where the DRT system uses a heuristic to compute a low
operating cost that is not guaranteed to be minimal [10].
In this case, the assumption in Definition 2 that the total
cost is independent of the arrival order of passengers (which
implies that the decisions of passengers to accept their fare
quotes or drop out and thus also their fare quotes them-
selves do not depend on the arrival order of passengers) is
not satisfied. This assumption is used (only) to prove that
POCS satisfies the ex-post incentive-compatibility property.
We thus investigate whether the best strategy of every pas-
senger remains to arrive truthfully, for example because the
likelihood of transport capacity still being available tends to
decrease over time.

4.1 Transport Simulator
Our transport simulator first generates a given number of

shuttles and passengers. Each shuttle is characterized by its
capacity, start location, end location, operating time win-

dow and operating cost for each unit of distance traveled.
Each passenger is characterized by its truthful arrival time,
start location, end location, pick-up time window, drop-off
time window and fare limit. The settings of our simulator
are slightly more general than what we have used in the
DRT examples because operating time windows of shuttles
and pick-up and drop-off time windows of passengers are
taken into account. The transport simulator then simulates
each passenger. Once a passenger is assigned to a shuttle,
it is never re-assigned to a different shuttle, which makes
it possible to calculate the marginal cost of a passenger as
the lowest operating cost increase of adding the passenger
to any shuttle, but is also a reason why the total cost (which
equals the sum of the operating costs of all shuttles) is not
guaranteed to be equal to the minimal operating cost or to
be independent of the arrival order of the passengers. When
a new passenger submits a ride request, the transport simu-
lator requests from each shuttle the operating cost increase
from adding the passenger to all passengers previously as-
signed to it, selects a shuttle with the lowest operating cost
increase and then uses POCS to calculate a fare quote for
the passenger under the assumption that the passenger is
assigned to the selected shuttle. If the fare limit of the pas-
senger is lower than this fare quote, then the passenger drops
out, and the transport simulator does not service it. Other-
wise, the passenger accepts the fare quote, and the transport
simulator adds it to all passengers previously assigned to the
selected shuttle and then updates the shared costs of all pas-
sengers assigned to the shuttles.

Each shuttle has to calculate its route, schedule and op-
erating cost increase (or, equivalently, operating cost) when
adding a new passenger to all passengers previously assigned
to it. The shuttle maintains an itinerary for all passengers
assigned to it - in the form of a sequence of locations, namely
its start location, its end location and the start and end loca-
tions of all passengers assigned to it. It calculates its travel
distance as the shortest travel distance needed to visit all
locations in the order given in its itinerary, and it calculates
its operating cost as the product of its travel distance and
its operating cost for each unit of distance traveled. Deter-
mining an itinerary for the new passenger and all passengers
previously assigned to it that minimizes its operating cost is
time-consuming. The shuttle therefore uses a non-optimal
scheduling method [17, 11], which is another reason why the
total cost is not guaranteed to equal the minimal operating
cost and not guaranteed to be independent of the arrival or-
der of passengers. In the construction phase of the schedul-
ing method, the shuttle uses a cheapest-insertion method to
construct a (feasible) itinerary by inserting the start and end
locations of the new passenger into the cached itinerary for
the passengers previously assigned to it. In the subsequent
improvement phase of the scheduling method, the shuttle
uses tabu search [7, 13, 5, 6], a form of hill climbing, to
improve the itinerary from the construction phase.

4.2 Experiment 1
In Experiment 1, we demonstrate that passengers have

an incentive to arrive truthfully since their fare quotes and
fares tend to increase as their arrival times increase. Thus,
it is more likely that they accept their fare quotes and are
serviced for low fares if they arrive as early as possible. We
perform 10,000 simulations with the transport simulator in
a grid city of size 11 × 11 (that is, with 121 locations) and
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Figure 3: Results of Experiment 1

report average results. There are 25 shuttles that can each
transport up to 10 passengers and operate the same hours
from dawn (time 101) to dusk (time 1440). We assume that
passengers submit their requests before dawn (the departure
time of the shuttles) because otherwise the marginal costs
depend on their arrival times. We also assume that shuttles
have sufficient time to service all passengers before dusk.
The shuttles start at a depot in the center of the city. Each
shuttle incurs an operating cost of 1 for each unit of distance
traveled and needs to return to its initial location at dusk.
There are 100 passengers that all arrive truthfully one at a
time (that is, their arrival times range from time 1 to time
100). The start location of 20 percent of the passengers is the
depot. The start locations of the other passengers and the
end locations of all passengers are randomly selected from all
locations with uniform probability. The pick-up and drop-off
time windows are identical for each passenger but might be
different from passenger to passenger. Their lower bounds
are dawn, and the differences between their upper and lower
bounds are randomly selected from being 2.5 to 3.0 times
higher than their alpha values (that is, the shortest point-
to-point travel distance from their start location to their
end location). Thus, passengers do not have tight schedules,
resulting in low fare quotes. The fare limits of passengers
are randomly selected from being 1.5 to 3.0 times higher
than their alpha values. Thus, passengers have high fare
limits. For both of these reasons, the fare quotes often do
not exceed the fare limits. Many passengers therefore accept
their fare quotes and are serviced.

Figure 3 shows the probability that passengers accept
their fare quotes (“Matched Probabilities of Passengers”) as
a function of their arrival times k, that is, the percentage of
simulations with costkπ(k) ≤ wπ(k). The probability that pas-
sengers accept their fare quotes is around 75 percent. It de-
creases as their arrival times increase (since their fare quotes
tend to increase as their arrival times increase) but only

very slowly. Figure 3 also shows the fares per alpha value of
all passengers that accepted their fare quotes (“Normalized
Shared Costs”) as a function of their arrival times k, that is,
cost100π(k) averaged over all simulations with costkπ(k) ≤ wπ(k).
The fares per alpha value of passengers increase as their
arrival times increase (as suggested by the online fairness
property) but only very slowly. The only exception is the
sharp increase for arrival times close to 100 since passengers
that arrive then can no longer share their costs with a high
number of passengers that arrive after them.

4.3 Experiment 2
The definition of ex-post incentive compatibility states

that the best strategy of every passenger is to arrive truth-
fully, provided that all other passengers arrive truthfully
as well and do not change whether they accept or decline
their fare quotes, two assumptions that are not guaranteed
to be satisfied in practice. We have already shown in Sec-
tion 3.4 that POCS does not satisfy the ex-post incentive-
compatibility property if the second condition is removed.
In Experiment 2, we therefore evaluate how likely it is that
passengers can decrease their fares by delaying their arrivals
if the second condition is removed. Experiment 2 is similar
to Experiment 1, except that we distinguish four scenarios
with different flexibilities of shuttles and passengers and use
experimental parameters that decrease the scale of the ex-
periment since each simulation is now more time-consuming.
We perform 1,000 simulations with the transport simula-
tor in a grid city of size 5 × 5 and report average results.
Each simulation consists of at most 45 runs in addition to
a run where Passengers P1 . . . P10 arrive truthfully in order
P1 . . . P10, namely runs where all passengers arrive truth-
fully except that Passenger Pi delays its arrival and arrives
only immediately after Passenger Pj for all i and j with
1 ≤ i < j ≤ 10 where Passenger Pi accepts its fare quote
when all passengers arrive truthfully. There are either 2 or
10 shuttles (for two scenarios) that can each transport up
to 3 passengers, operate the same hours from dawn to dusk
and start at a depot in the center of the city. Each shut-
tle incurs an operating cost of 1 for each unit of distance
traveled and needs to return to its initial location at dusk.
There are 10 passengers that arrive one at a time (that is,
their arrival times range from time 1 to time 10) before the
shuttles start to service them. The start and end locations of
all passengers are randomly selected from all locations with
uniform probability. The pick-up and drop-off time windows
are identical for each passenger but might be different from
passenger to passenger. Their lower bounds are dawn, and
the differences between their upper and lower bounds are
either 3.0 or 4.0 times (for two scenarios) higher than their
alpha values. The fare limits of passengers are 3.0 times
higher than their alpha values.

Table 7 shows, for each scenario, both the number of runs
and the probabilities that passengers who delay their arrivals
improve (since their fares decrease), do not change (since
their fares remain unchanged) or worsen (since either their
fare quotes increase sufficiently for them to drop out or - in
case they do not drop out - their fares increase) their situa-
tions. Experiment 2 demonstrates that passengers have an
incentive to arrive truthfully since, in all scenarios, the prob-
ability that passengers who delay their arrivals improve their
situations is lower than 20 percent while the probability that
they worsen their situation is higher than 50 percent. Exper-
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Table 7: Results of Experiment 2
Scenario Number of Time Number of Situation No Situation Worsens

Shuttles Window Runs Improves Change Not Dropping Out Dropping Out
1 2 3.0 32,808 11% 32% 24% 33%
2 2 4.0 37,259 15% 31% 39% 15%
3 10 3.0 36,955 16% 31% 51% 2%
4 10 4.0 37,990 17% 29% 51% 3%

iment 2 does not measure one advantage of passengers who
delay their arrivals, namely the situation when passengers
originally dropped out since their fare quotes exceeded their
fare limits and by delaying their arrivals improve their fare
quotes so they no longer drop out. Also, Experiment 2 as-
sumes that passengers delay their arrivals randomly (rather
than strategically) due to missing knowledge of future ar-
rivals of passengers. The probability that the situation for
passengers who delay their arrivals worsens is zero if passen-
gers are able to delay their arrivals strategically since they
can always decide to arrive truthfully instead, in which case
their situations do not change. We thus expect the proba-
bility that their situations improve to increase.

5. CONCLUSIONS
In this paper, we determined properties of cost-sharing

mechanisms that we believe make demand-responsive trans-
port systems attractive to both shuttles and passengers,
namely online fairness, immediate response, individual ratio-
nality, budget balance and ex-post incentive compatibility.
We then proposed a novel cost-sharing mechanism, called
Proportional Online Cost Sharing (POCS), that has these
properties. Overall, POCS is a first step towards addressing
some of the problems raised by the missing knowledge of fu-
ture arrivals of passengers, which differentiates our research
from previous research [3, 15, 8, 1]. However, some issues re-
main to be addressed by more advanced online cost-sharing
mechanisms, including integrating more complex models of
passengers, shuttles and transport environments. Our cur-
rent simplifying assumptions include, for example, that the
availability of shuttles does not change unexpectedly, that
all passengers arrive before the shuttles start to service pas-
sengers, that fares depend only on the ride requests and no
other considerations (for example, that DRT systems do not
face competition), that all passengers evaluate their trips
uniformly according to the criteria quantified by the alpha
values (for example, that all passengers consider travel time
to be equally important), that DRT systems provide fare
quotes to passengers without predicting future arrivals of
passengers (for example, that DRT systems service hard-to-
accommodate passengers even though these passengers in-
crease the shared costs of subsequent passengers and might
make subsequent passengers drop out), that passengers try
to decrease their fares only by delaying their arrivals (rather
than, for example, by colluding with other passengers or en-
tering fake ride requests under false names) and that passen-
gers honor their commitments (for example, that passengers
do not change ride requests, cancel them or show up late).
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ABSTRACT
Efficient intersection control is an interesting problem in
traffic management, and may collaborate to reduce traffic
jams as well travel times. New technologies, such as Vehic-
ular Ad hoc NETworks (VANETs) and ubiquitous comput-
ing, may collaborate to the implementation of new policies
to intersection control, thus providing flexibility and perfor-
mance to transportation networks. While these technologies
are not widely available, new policies to intersection control
can be intensively evaluated in simulation environments. In
this paper, we evaluate different intersection control policies
and different scenarios using as support SUMO, a trans-
portation network simulator in the context of multiagent
systems (MAS). In the evaluation, we concern in equitabil-
ity which measures the fairness to attend a request from a
vehicle to pass a given intersection. Our simulation results
indicate that different policies are suitable to different sce-
narios leading us to believe that adaptive policies must be
proposed.
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1. INTRODUCTION
With the increasing number of vehicles circulating in ur-

ban areas, and the consequent increase in demand, the de-
velopment of services supported by information and commu-
nication technologies (ICTs) to improve traffic management
and the provision of urban mobility are indispensable. In
this scenario, new technologies such as VANETs (Vehicular
Ad hoc NETworks), ubiquitous computing and cloud com-
puting allow adequate infrastructure for such services. In the
future, vehicles will be able to share information in trans-
portation networks, and will be able to collaborate to reduce
traffic jams, travel times, accidents and vehicle emissions.

Intersection control represents a major challenge in traffic
management, and it means to decide which vehicle should
pass an intersection and which vehicle should wait. In real
traffic systems, intersection control is solved by traffic lights,
or using priority signs, or by the priority to the right rule,
when the intersection is not signalized. Traffic lights tradi-
tionally control vehicles’ flow using signal-timing plan with
unique set of timing parameters. The large majority of traf-
fic lights cannot apart in presence of changes in traffic con-
ditions and it can result in inefficient service.

With the availability of VANETs infrastructure and ser-
vices, traffic lights would be eliminated. Vehicles will be
provided with GPS devices and vehicle to vehicle (V2V),
and vehicle to infrastructure (V2I) communication, installed
and operational. Road intersection control would be per-
formed by the vehicles themselves, modeled as autonomous
agents. In this scenario, each autonomous agent indepen-
dently obeys its own behavior and interacts each other and/or
with the infrastructure allowing the decision-making pro-
cess.

Thus, adaptive solutions can be applied. Dynamic solu-
tions adapt behavior according to the traffic flow and can be
centered at the vehicle flow, and, alternatively at the vehicles
themselves. Semaphores based on adaptive flows have been
established in some Brazilian cities (e.g. Curitiba, Porto
Alegre, Belo Horizonte, and Fortaleza). They are calibrated
using information provided by the vehicles’ flow and aim to
eventually reduce congestion and travel times. The mode of
operation is simple: sensors are installed on the tracks and
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capture the presence of vehicles. This information is used
as input to calculate the proper split and cycle length in
signal-timing plans. This solution would avoid, for example,
the exposure of green light for a prolonged period in a road
with few vehicles, if the traffic is heavy at the concurrent
flow. However, it does not eliminate the need of having a
physical device installed and in operation.

Installation and maintenance of traffic lights is consider-
able expenses in Brazilian cities and in many world wide
cities. For instance, in Porto Alegre, there are more than
1,007 signalized intersections. The cost of installing each
semaphore is between $5,000 -$7,000 (Source: EPTC March
2011). In São Paulo, there are more than 4,800 signalized in-
tersections (Source: CET 2013). In Fortaleza, there are 656
traffic lights and the mensal cost to maintenance is about
$160,000 (Source: AMC June 2013). According to Ferreira
et al. [6] maintenance of traffic lights is considerable ex-
penses in the budget of cities. Thus, eliminating traffic lights
can result in budget savings.

In a futuristic scenario, with the deployment of VANETs
and the concept of autonomous vehicles, traffic lights would
be completely eliminated. Intersection control will be under-
taken by vehicles themselves. Indeed, the ability to imple-
ment policies to intersection control with VANETs support
contrasts with the traditional signal-timing plans, which uses
a mathematical model to describe the traffic flow. There-
fore, new policies to deal with intersection control, beyond
the traditional signal-timing plans adopted by traffic lights,
must be proposed and evaluated before the availability of
new technologies. For instance, policies to deal with CPU
scheduling, such as FIFO (first in first out) and SJF (short-
est job first), would be used to control the vehicle passage
through intersections, with the support of V2V and V2I
communication.

Since VANETs technology is not yet widely available, com-
puter simulation gives a way to evaluate possibilities before
being implemented them in practice. Thus, in this paper, we
evaluate different intersection control policies using simula-
tion supported by multiagent systems (MAS), and V2I com-
munication. Each vehicle is represented as an autonomous
agent that follows a behavior independently and interacts
with other agents and/or infrastructure for decision-making.
Bazzan [1] and Chen et al [3] emphasize the benefits of us-
ing MAS to model and to evaluate solutions target to trans-
portation systems. Experiments were conducted in SUMO
[2]. In the evaluation, we concern in equitability which mea-
sures the fairness to attend a request from a vehicle to pass
through an intersection. Our simulation results indicate that
different policies are suitable to different scenarios leading
us to believe that adaptive policies must be proposed.

The paper is organized as follows. Related works are de-
scribed in section 2. Algorithms and metrics we used in ex-
periments were described in Section 3. Experimental evalu-
ation results are presented in Section 4. Finally, conclusions
and future works are presented in Section 5.

2. RELATED WORKS
The idea of removing traffic lights or at least to improve

its use is not new. In the following we discuss some existing
research projects.

Krajzewicz et al. [7] focused on efficient flow-sensitive
traffic lights. With the support of SUMO, Krajzewicz et
al. compares the size of different of vehicle queues’ to de-

cide about which vehicle will pass an intersection first. The
decision is made using the support of V2I communication.
Vehicles in the larger queue have the higher priority to cross
the intersection. Intersection control is performed by a phys-
ical device implemented by the infrastructure (i.e. not by
the vehicles themselves). V2V communication is not taken
into account.

Vehicle centered-solutions would be one step further, and
would use some mechanism to promote not only efficient
traffic flow, but also fairness to attend user service. How-
ever, vehicular communication technology must be widely
available. Dresner & Stone [4] describe a reservation scheme
where the vehicle should allocate a slot, in a central, con-
cerning space and time to cross an intersection of two roads.
According to the experiments presented in this article, this
technique would be more efficient in terms of throughput
in comparison with the traditional semaphore. However, if
a vehicle cannot book a slot necessary to cross of the in-
tersection, it can suffer indefinite hold. This drawback was
fixed in [5]. Another problem is the existence of a central
to apply the intersection control policy. If the system fails,
the service becomes unavailable. An extension of the work
of Dresner & Stone for the context of multiple intersections
was conducted by Vasirani & Ossowski [9]. The idea is to
provide an adequate service to the public, but still without
collaboration among vehicles.

Finally, in Ferreira et al. [6], through the support of V2V
communication and AVL (automatic vehicle location), the
nearest vehicle to an intersection is elected to coordinate the
passage of vehicles at a particular intersection. When the
driver finally passes the intersection, a new vehicle is chosen
to manage the intersection. However, given that two vehicles
vi and vj may be placed in distinct pathways S and W , but
share the same distance d with respect to the intersection,
a guarantee of election only one coordinator needs to be
imposed. Furthermore, fairness to attending user service is
not taken into account.

We may conclude that there is a need of research works
to evaluate more effectively intersection control and to ex-
plore more broadly these mechanisms. The response to the
request of vehicles passing through an intersection must be
performed efficiently (through a solution that delivers traffic
flow) and in the direction to minimize the waiting time of
each vehicle individually. By minimizing the waiting time,
we mean that the policy applied to intersection control must
look for equitability or fairness. Vehicles in different queues
should not waiting so long to pass through an intersection.
In addition, starvation must be avoided. This work is a step
toward this direction.

In general, new mechanisms to intersection control need
to be proposed and should be analyzed extensively before
putting them into practice and before VANETS technol-
ogy would be widely available. Additionally, it would be
interesting the use of policies preferably focused on vehicu-
lar communication to enable the exclusion (physical) traffic
lights. This will be the focus on our future work.

3. MODELING THE PROBLEM

3.1 Applying the agent model to transporta-
tion networks

Autonomous agents is a convenient abstraction to model
transportation networks. Vehicles are described such as au-
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tonomous units with independent behavior. In our scenario,
a group of agents (vehicles) follows a policy to pass of an
intersection point.

Each vehicle vi (to i ∈ N) is uniquely identified (in prac-
tice, the Vehicle Identification Number (VIN) can be used)
and belongs to an unique queue or segment called S or W .
Queue S is placed in the route SN and queue W is placed
in the route WE. All the vehicles in S move from South to
North, while all the vehicles in W move from West to East.
The queues share a critical section (intersection point P ),
where vehicles must pass to reach an ultimate goal. Only
one vehicle may pass the critical section at a time. Who
decides what is this vehicle is the intersection control
policy. Figure 1 depicts this scenario.

Figure 1: Scenario with routes SN and WE and segments
S and W

Also, in Figure 1, there is the information used to code
this intersection and routes in SUMO, the transportation
network simulator in the context of MAS we used to imple-
ment and compare policies.

In our approach, basically, each vehicle vi from S or W
comes in contact with the infrastructure, through the emis-
sion of a message mi to order a ticket to allow passing
through the intersection, according to the policy in ques-
tion. The infrastructure applies the policy and decides the
order in which the vehicle must pass the intersection, and
informs it to the vehicle through a reply message mi − 1.
The infrastructure can be implemented in distributed or in
a centralized fashion, and will be focused in our future work.
In practice, V2I communication could be supported by the
IEEE 802.11 p protocols (Wi-Fi) or by GSM/GPRS and
3G/4G (i.e. mobile phone networks).

3.2 Intersection control policies
The scope of this work, we implemented five policies to in-

tersection control, including: (i) the right of way, (ii) signal-
timing plan, (iii) the largest queue always, (iv) the largest
queue first, and (v) at least k vehicles each time. These
policies are described more in detail in the following.

3.2.1 The right of way
The default policy, the right of way, results from the set-

tings taken by SUMO to generate the simulation. This pol-
icy is based on assigning the highest priority for the passage
of vehicles through intersections using the right of way pol-
icy. Considering two road segments S and W that meet at
an intersection point P , and suppose that the highest prior-
ity of passing vehicles by P is assigned to S, vehicles on W
only pass through P when no vehicles are queuing on S.

3.2.2 Signal-timing plan
The signal-timing plan is the policy applied by traditional

traffic lights to deal with intersection control. It is based
on the scheduling traffic signal phases at intervals given by
phases.

The major drawback of signal-timing plan applied in large
majority of traffic lights is that it cannot apart in presence of
changes in traffic conditions, and it can result in inefficient
service. For instance, it cannot avoid presenting the green
signal for a long period of time even if there is only one
vehicle or a few vehicles in a queue.

3.2.3 The largest queue always
The largest queue always policy consists of giving the higher

priority to the passage through the intersection to the seg-
ment with larger queue of vehicles outside the critical sec-
tion.

Considering two road segments S and W that meet at an
intersection point P , the algorithm of longest line always
starts capturing all vehicles outside the critical section in
S and W , calculating the number of vehicles on each track
segment, and comparing the two values. If S is the largest
queue, vehicles on queue W need wait, until the last vehicle
in queue S passes through P . Next, the lengths of the queues
are compared again to decide who will pass through P . The
same process is repeated until the end of the simulation.

The drawback of this policy is that it can suffer from star-
vation in case of a queue is typically shortest than the other,
even if new vehicles are continuously added on queues.

3.2.4 The largest queue first
The policy defined by the largest queue first is similar

to the largest queue always, except that it does not only
give priority of passing through the intersection to the track
segment with the line of vehicles outside the critical section.
However, it lets the lower queue of the other track segment
to cross the intersection, before returning to compare the
two queues lengths’ again.

Considering two road segments S and W that meet at an
intersection point P , the largest queue first starts capturing
all vehicles out of the critical section in S and W , calculating
the number of vehicles on each track segment, and compar-
ing the two values. If S is the largest queue, vehicles on
queue W need wait, until the last vehicle in queue S passes
through P . Then it passes the entire row in W before com-
paring again the next queues in both segments. The same
process is repeated until the simulation ends. Contrasting
with the largest queue always policy, in the largest queue first
starvation does not take place.

3.2.5 At least k vehicles each time
The policy at least k vehicles each time constitutes suc-

cessive passage of vehicles of each road, since the number
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of vehicles on the road that has the slot to spend is greater
than or equal to k, k being an informed integer.

Considering two road segments S and W that meet at
an intersection point P , and S the track segment chosen
to start the time. The policy at least k vehicles each time
starts capturing all vehicles out of the critical section in S,
and calculating the number vehicles on that queue. If this is
greater than or equal to k, the vehicles on queue in W need
to stop until the last vehicle in the queue S passes through
the intersection. Otherwise, it turns passes to W . The same
process is repeated until the end of the simulation.

3.3 Metrics
To compare and evaluate policies described in item 3.2

regarding equitability, we used a sort of specific metrics.
Equitability measures the fairness to attend a request from
a vehicle to pass through an intersection. In the following,
we define these metrics.

Definition 1: state of traffic flow. A state of traf-
fic flow or state Ei, for short, is the behavior the traffic
flow, described from the period, the preference from a route
with respect to another (i.e. priority), and maximum speed
allowed in a given route (MaxSpeed). All these values are
configured in SUMO.

Definition 2: scenario. A scenario Ci is the result of
applying one of the algorithms described in item 3.2 in on
the defined traffic states Ei.

Definition 3: rate of change of vehicles. Considering
a scenario Ci, with an intersection point P , and two track
segments S and W . The rate of change of vehicles in
the range of k steps, represented by Tk, is the ratio of the
passage of vehicles originally in X = {S or W} by P in the
range of k steps, defined by the following formula:

TXk =

∑
vk∑
v

where:

• ∑ vk ∈ [0,N] and
∑

v ∈ (0,N], where N is the total of
vehicles in a simulation.

• k ∈ (0, Ns), where Ns is the total number of steps in
a simulation.

• vk represents a vehicle from S or W that passed through
the intersection P at the step k.

• v represents a vehicle from S or W that still does not
cross the intersection P .

Note that if TSk > TW k at step k, then there were more
vehicles from S than in W that pass through P when the
simulation reaches the step k.

Definition 4: total rate of change. Considering a
scenario Ci, with an intersection point P , and the two track
segments S and W , the total rate of change of N vehicles
in the simulation, represented by XN is the sum of the rates
of variations in N . The total rate of change of a segment X
is defined by the following formula:

XX =
∑

TX

If XS > XW , then there were more vehicles S that have
passed through P than in W .

Definition 5: difference of total variation rates.
Considering a scenario Ci with two road segments S and
W that meet at in an intersection point P . The difference
of total variation rates of S and W in Ci, represented
by dX, is the magnitude of the difference between XS and
XW , and is expressed by the following formula:

dX = |XS −XW |
Definition 6: distribution of the traffic flow con-

cerning two road segments. The distribution of the
traffic flow concerning two road segments S and W
crossing at an intersection point P in scenario Ck, compares
the proportions of vehicle crossings of S and W in P . Con-
sidering two scenarios Ci and Cj and the same E, and let
dXi and dXj , their difference in total charges in Ci and Cj :

• if dXi> dXj , we say that the flow distribution in Ci is
better than Cj . In other words, Ci is more distributed
than Cj ,

• if dXi is tending to zero, we may say that the distri-
bution flow in Ci tends to be equitable, or Ci tends to
be equitable distributed with respect to the flow.

Finally, a policy a is considered more effective than an-
other b based on a state of traffic flow Ei if and only if the
scenario Ci generated by a applied to Ei is more equitable
distributed than Cj generated by b applied to the same Ei.

4. EXPERIMENTAL EVALUATION

4.1 Configuration of traffic flow
To conduct experiments, we configured three different states

of traffic flow, E1−3, which are summarized on Table 1 and
Figure 2. Each state of traffic flow occurs in a time interval
of 14,400 steps. In SUMO, it represents 4 hours since a time
step is, by default, one second. We believe this time interval
is satisfactory to evaluate policies to and decide which al-
gorithm implements the most efficient policy, since 4 hours
represent a half-journey.

In the experiments, we used three parameters to configure
traffic states: priority, period and MaxSpeed. If the priority
of a road is higher that the priority of another road, that
means if there are two vehicles on a intersection, the vehicle
on the road with the highest priority goes first.

Period describes the traffic flow in terms of dense and
rarefied. If a road has a shorter period than otherwise, it
means that the road is denser than another road. With
regard to the maximum speed, the value used is 16.7 m/s.
In addition, the time interval used in signal-timing plan was
20s to the green phase, 0s to the yellow phase and 20s to
the red phase.

States Priority Period MaxSpeed
E1 SN > WE SN = WE SN = WE
E2 SN > WE SN < WE SN = WE
E3 SN > WE SN > WE SN = WE

Table 1: States simulated in the experimental evaluation

In Table 1, the column States identify each traffic state.
The column Priority displays the comparison of priority
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(a) (b) (c)

Figure 2: Configuration to states (a) E1, (b) E2 and (c) E3

in routes SN and WE, and column MaxSpeed display val-
ues used as maximum speed in the two routes. Remember
that SN represents the entire segment of road regarding an
intersection P from South to North, while WE represents
the entire segment of road regarding an intersection P from
West to East.

More specifically, as seen in Table 1, the state of traffic
flow E1 is defined as the state where the route SN has the
high priority in the passage of vehicles through the intersec-
tion P with respect to via WE. The traffic flow is dense
in the two ways, i.e. vehicles access the two routes with
the same frequency, and are subject to the same maximum
speed.

The state of traffic flow in E2 and E3 is the same used
in E1. However, in E2 the traffic flow is dense only in SN .
The traffic flow in SN is ten times higher than in via WE.
But all vehicles are subject to the same maximum.

The state of traffic flow E3 has a back-flow to the E2.
The path SN continues to have priority in the passage of
vehicles through the intersection with respect to via WE,
and the maximum speed achievable remains the same in
both pathways. However, the traffic flow is dense only on
via WE, i.e. vehicles access route WE at a rate ten times
higher than vehicles in via SN .

Given states E1−3 and algorithms/policies described in
Section 3, we combined them to obtained different group of
scenarios. The scenarios generated are classified into three
groups of scenarios, based on states of traffic flow in which
the algorithms were applied. Basically, a scenario Ci is a
combination of a Ei and a given policy.

4.2 Evaluating the results
To decide which policy is appropriate to a given scenario,

we conduct experiments using SUMO and the previous given
scenarios and values. The objective of the comparison is to
find which is the most distributed scenario of each group in
order to decide what the best algorithm that distributes the
passage of vehicles through the intersection for each scenario
group. The target variable used in the experimentation is
the difference of total variation rates dX in each scenario.

Considering a scenario Ci with two road segments S and
W that meet at an intersection point P , and TS is the rate
of change of the vehicles in segment S in step k and TW is
the rate of change of vehicles at W in step k, we may have
that:

• Ci is viewed through a graph, such as in Figure 3,
that has two types of lines: those that represent rates
of variation Tw per step unit, and those that represent
rates of variation per Ts by step unit.

• TS indicates the percentage of vehicles in S that passed
by P in step k and TW indicates the percentage of
vehicles in W that passed by P in step k.

• When TS is 0, it indicates that there is no vehicle in S
that have passed through P in step k and when TW is
0, it indicates that there is no vehicle in W that have
passed through P in the step k.

• When TS is maximum, this indicates that all vehicles
in S have passed through P in step k and when TW

is maximum, this indicates that all vehicles in W have
passed for P in step k.

More specifically, in Figure 3, the scenario shown results
from the application of signal-timing plan policy to traffic
flow state Ei. Between 0 and 20 steps, for instance, TS and
TW are equal to 0. Therefore, no vehicle from S or W has
passed through P in that interval. In addition, in any step in
TS or TW is maximal. Therefore, there was never happened
a situation in which all vehicles placed in S or in W passing
through P .

Another example of a scenario is given in Figure 4, where
the scenario results from the application of the right of way
policy to the state of traffic flow E2. Again, between 0 and 20
steps, for instance, TS and TW are equal to 0. Therefore, no
vehicle from S or W has passed through P in that interval.
In addition, in step in TS or TW are maximal. Therefore,
there was happened a situation in which all vehicles in S or
in W passing through P .

At the total, 15 graphs were generated. Due lack of space
in this document, we will not present all the graphs here.
Our discussion will be based on tables, which will be ad-
dressed below. Each table is associated with a previous
described scenario, E1−3, grouping the three different cate-
gories. In the following, we discuss these group of scenarios.

4.2.1 Scenario Group G1

Table 2 summarizes the results obtained by the applica-
tion of state E1 to the implemented policies within the range
of 14, 400 steps in SUMO.

Regarding the obtained results, one can observe that the
policy the largest queue first is the most widely distributed
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Policy Xs Xw dX
The right of way 1,626.13 41.62 1,584.51
Signal-timing plan 463.71 196.59 267.12
The largest queue always 400.18 301.56 98.62
The largest queue first 277.21 334.54 57.32
At least k vehicles each
time

395.33 282.58 112.75

Table 2: Traffic flow distribution dX concerning two road
segments obtained by the application of state E1 to the im-
plemented algorithms within the range of 14, 400 steps in
SUMO

of all with a dX = 57.32. Remember the smallest dX, the
most effective in terms of equitability. The worst policy is
the right of way with dX = 1,584.51.

Thus, we can conclude that the policy implemented in the
largest queue first proved to be the best choice to control
the passage of vehicles through the intersection between two
lines with the same flow frequency and maximum speed, a
priority which is higher than the other, so as defined by state
of traffic flow E1.

In the following, we have the policy the largest queue al-
ways similar to at least k vehicles each time, which proved
to be the second and the third most suitable policies for the
control of such traffic. The signal-timing plan is the forth
choice and the way of right policy is the least suitable for
such transit.

4.2.2 Scenario Group G2

Table 3 summarizes the results obtained by the applica-
tion of state E2 to the implemented algorithms within the
range of 14, 400 steps in SUMO.

Policy Xs Xw dX
The right of way 1,619.45 43.75 1,575.70
Signal-timing plan 456.85 589.28 132.43
The largest queue always 1,156.05 300.90 855.15
The largest queue first 1,057.24 428.57 628.67
At least k vehicles each
time

1,294.14 127.17 1,166.97

Table 3: Traffic flow distribution dX concerning two road
segments obtained by the application of state E2 to the im-
plemented algorithms within the range of 14, 400 steps in
SUMO

One can observe that the signal-timing plan policy was the
most widely distributed of all with dX = 132.43. Secondly,
we have the largest queue first policy with dX = 628.67, then
the largest queue always with dX = 855.15, then at least k
vehicles each time policy with dX = 1,166.97, and finally,
we have the right of way with 1,575.70.

Thus, we can conclude that the policy implemented in
the signal-timing plan proved to be the best suited to control
the passage of vehicles through the intersection between two
paths with the traffic flow as defined by the state of traffic
flow E2.

In the following, we have the policy the largest queue first,
this time, the second proved more suitable for the control
of this type of traffic, following by the largest queue always
which is in the third position. The next one is at least k
vehicles each time following by the way of right policy, which
is again, the least suitable for such transit.

4.2.3 Scenario Group G3

Finally, Table 4 summarizes the results obtained by the
application of state E3 to the implemented algorithms within
the range of 14, 400 steps in SUMO.

Policy Xs Xw dX
The right of way 899.00 385.64 513.36
Signal-timing plan 751.75 233.57 518.18
The largest queue always 282.58 547.90 265.32
The largest queue first 227.80 545.51 317.71
At least k vehicles each
time

505.64 515.40 9.76

Table 4: Traffic flow distribution dX concerning two road
segments obtained by the application of state E3 to the im-
plemented algorithms within the range of 14, 400 steps in
SUMO

One can observe in this scenario that at least k vehicles
each time policy is the most widely distributed of all with dX
= 9.76, reaching almost to equitable distribution between
the two pathways, noting that the distribution of vehicles
driving by the intersection of two roads in a given scenario
tends to evenness as plus the difference of dX tends to zero.
In second place, we have the largest queue always with dX =
265.32, then the largest queue first with dX = 317.71, then
signal-timing plan with dX = 513.36, and finally, we have
the right of way with 518.18.

Thus, we can conclude that the policy implemented in the
at least k vehicles each time clearly proved the most suitable
to control the passage of vehicles through the intersection
between two roads with traffic flow as defined by the state
E3.

In the following, we have the largest queue always that
proved to be the second most suitable policy for this type of
traffic, and the largest queue first is in the third one, the way
of right in fourth position and, finally, we have signal-timing
plan policy.

5. CONCLUSION AND FUTURE WORKS
This work demonstrated that the intersection control, typ-

ically implemented in Brazilian cities by traffic lights, can
have a significant improvement with the application of algo-
rithms based on the traffic flow. The proposition of mech-
anisms, in general, more suitable to intersection control is
necessary, since efficient traffic management is a problem
present and constant in our daily lives. As argued previ-
ously, the existing solutions are preferably based on signal
timing plans with no adaptation. However, it is clear that
different policies can be implemented to improve results.

Our target application involves transportation networks
and urban mobility, issues that have aroused much interest
in the whole contemporary society. And, in fact, solutions
and mechanisms to improve urban mobility and transporta-
tion processes have been implemented and proposed, and
are more affordable currently. Some examples are the adap-
tive traffic lights recently installed some Brazilian cities (e.g.
Porto Alegre, Belo Horizonte e Fortaleza) and many ATIS
(advanced traveler information systems) such as Google Tran-
sit, Waze, Olho Vivo, (from São Paulo, which provide to
users information about public transport status), for in-
stance.

More specifically, this paper presented a simulation in the
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context of transportation networks to deal with intersection
control. Different policies for intersection management were
evaluated. The simulation was configured with two roads:
one from south to north (SN), and another from west to
east (WE), and an intersection point P . Then three states
of traffic flow were created: E1−3, based on the preference
of SN on WE at passing vehicles by P . Finally, we defined
15 different scenarios from the application of policies to de-
fined traffic states. They were classified into three groups of
scenarios according each traffic situation.

Experiments with these three scenarios were run to eval-
uate equitability. After experimentation, we may conclude
that if the traffic is of the type defined by the state E1, the
policy implemented by the the largest queue first algorithm
is the most suitable for control the passage of vehicles by
P . While, when traffic is the type defined by the state E2,
the policy implemented by the traffic lights is the most suit-
able for the control of P . Finally, when the traffic of the
type defined by the state E3, implemented the policy by at
least k vehicles each time is the most appropriate place for
intersection control in P .

With these results, we can conclude that applying only one
policy to intersection control is not the best solution. Since
traffic is subject to dynamism and delays, different traffic
scenarios need different policies. In this direction, this work
represents a further step in efficient traffic signal control.

Future works include the implementation of more sophis-
ticated policies. For instance, we could develop a hybrid
policy, which is the junction of several policies. Further-
more, one can define other states that describe the traf-
fic with more emphasis the realism in the simulation, tak-
ing into account other variables that influence the traffic
flow, among others: variation of the maximum speed of the
road, different types of vehicles and priorities (such as ambu-
lances, firemen service), addition of passages through inter-
sections, pedestrian accidents and other incidents that block
and change the traffic flow.

Decentralized intersection control policies also need to be
effectively proposed and evaluated before put them into prac-
tice. In this case, only V2V communication should be con-
sidered as well as the use of simulators target to transport
networks and VANETs. Finally, such as in Vasirani & Os-
sowski [9], the transportation network can expand with the
addition of new roads and lanes, and several intersections.
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Figure 3: Scenario resulted from the application of signal-timing plan policy to the state of traffic flow E1

Figure 4: Scenario resulted from application of the right of way policy to the state of traffic flow E2
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ABSTRACT
We describe an application of Macedo’s computational
model of selective attention for overcoming the problem
of information and interruption overload of intelligent
agents in travel information systems. This computational
model has been integrated into the architecture of a BDI
artificial agent so that this can autonomously select relevant,
interesting travel information of the (external or internal)
environment while ignoring other less relevant information.
The advantage is that the agent can communicate only that
interesting, selective information to its processing resources
(focus of the senses, decision-making, etc.) or to its human
owner’s processing resources so that these resources can
be allocated more effectively. We illustrate and provide
experimental results of this role of the artificial, selective
attention mechanism in the travel domain.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Information overload, Selective attention, Interest, Value
of information, Surprise, Uncertainty, Resource-bounded
agents, Personal agents

1. INTRODUCTION
The advent of information technology is a primary reason

for the abundance of information with which humans are
inundated, due to its ability to produce more information
more quickly and to disseminate this information to a
wider audience than ever before. Surprisingly, a lot
of recent studies confirmed what Toffler [36] predicted
a few decades ago: the overabundance of information
instead of being beneficial is a huge problem having many
negative implications not only in personal life but also
in organizations, business, and in general in the world

economy. In fact, research proves that the brain simply does
not deal very well with a multitasking process [12]. This
explains why decision quality and the rate of performing
tasks degrades with increases in the amount of information
being considered.

A fundamental strategy for dealing with this problem of
information overload [24] should include making devices that
incorporate themselves selective attention agents in order to
decrease the amount of information considered in their own
reasoning/decision-making processes or decrease the amount
of information provided by them to humans, preventing
these from a number of interruptions.

But how to model selective attention in artificial agents?
Although selective attention has been thoroughly researched
over the last 100 years in psychology and more recently
in neuroscience (e.g., [10, 38]), at present there is no
general theory of selective attention. Instead there are
specific theories for specific tasks such as orienting, visual
search, filtering, multiple action monitoring (dual task), and
multiple object tracking.

In spite of this, a number of models of selective
attention has been proposed in Cognitive Science (e.g., [9,
21]). Particularly related with these models is the issue
of measuring the value of information. A considerable
amount of literature has been published on these measures,
especially from the fields of active learning and experimental
design. Most of those measures rely on assessing the utility
or the informativeness of information (e.g., [8, 20, 13, 33]).
However, little attention has been given to the surprising and
motive congruence value of information, giving the beliefs
and desires of an agent.

Macedo, Reisenzein and Cardoso (e.g., [16, 19]), and
Lorini and Castelfranchi [14] proposed, independently,
computational models of surprise that are based on
the mechanism that compares newly acquired beliefs to
preexisting beliefs. Both models of artificial surprise were
influenced by psychological theories of surprise (e.g., [23]),
and both seek to capture essential aspects of human surprise
(see for a comparison [18]).

In this paper we describe the application of Macedo’s
artificial selective attention mechanism [15] to travel
information systems. In our approach, artificial agents of
travel information systems make use of that mechanism
so that only cognitively and affectively, interesting/relevant
travel information is selected and forwarded to drivers. The
selective attention mechanism relies on the psychological and
neuroscience studies about selective attention which defend
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that variables such as unexpectedness, unpredictability,
surprise, uncertainty, and motive congruence demand
attention (e.g., [2, 10, 25]).

The next section presents an overview of Macedo’s
computational model of selective attention. Section 3
illustrates how this selective attention mechanism can
be used for filtering irrelevant information in the travel
domain. Section 4 examines the performance of the selective
attention mechanism as well as its role on the decrease of
unnecessary information. Finally, in Section 5 we present
conclusions.

2. SELECTIVE ATTENTION AGENT
Selective attention may be defined as the cognitive process

of selective allocation of processing resources (focus of
the senses, etc.) on relevant, important or interesting
information of the (external or internal) environment while
ignoring other less relevant information. The issue is how to
measure the value of information. What makes something
interesting?

Macedo [15] developed previously an architecture for
a personalized, artificial selective attention agent (see
Figure 1). It is assumed that: (i) this agent interacts with
the external world receiving from it information through
the senses and outputs actions through its effectors; (ii)
the world is described by a large amount of statistical
experiments; (iii) the agent is a BDI agent [27], exhibiting
a prediction model (model for generating expectations, i.e.,
beliefs about the environment), a desire strength prediction
model (a model for generating desire strengths for all the
outcomes of the statistical experiments of the world that are
known given the desires of the agent – profile of the agent
which include basic desires), as well as the intentions (these
define the profile of the agent); (iv) the agent contains other
resources for the purpose of reasoning and decision-making.

The first of the modules of the architecture (module 1 in
Figure 1) is concerned with getting the input information.
The second is the computation of the current world
state. This is performed by generating expectations or
assumptions (module 2), based on the knowledge stored
in memory, for the gaps of the environment information
provided by the sensors (module 1). We assume that
each piece of information resulting from this process, before
it is processed by other cognitive skills, goes through
several sub-selective attention devices, each one evaluating
information according to a certain dimension such as
surprise (module 4), uncertainty (module 5), and motive-
congruence/incongruence – happiness (module 6). For
this task the selective attention mechanism takes into
account some knowledge container (memory — preexisting
information (module 7)), and the intentions and desires
(motives — module 8). There is a decision-making module
(module 9) that takes into account the values computed by
those sub-selective attention modules and decides if a piece
of information is relevant/interesting or not. Then, this
module of decision-making selects the more relevant pieces
of information so that other resources (reasoning, decision-
making, displaying, communication resources, etc.) (module
10) can be allocated to deal with them.

The process of making the right decision depends heavily
on a good model of the environment that surrounds agents.
This is also true for deciding in which information should
the agent focus. Unfortunately, the real world is not crystal
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Figure 1: Architecture of an artificial selective attention
agent.

clear to agents. Agents almost never have access to the
whole environment, mainly because of the incompleteness
and incorrectness of their perceptual and understanding
components. In fact, it is too much work to obtain all
the information from a complex and dynamic world, and
it is quite likely that the accessible information suffers
distortions. Nevertheless, since the success of agents
depends heavily on the completeness of the information of
the state of the world, they have to pursue alternatives to
construct good models of the world even (and especially)
when this is uncertain. According to psychologists, cognitive
scientists, and ethologists [11, 26], humans and, in general,
animals attempt to overcome this limitation through the
generation of assumptions or expectations to fill in gaps in
the present or future observational information. When the
missing information, either of the present state of the world
or of the future states of the world, becomes known to the
agent, there may be an inconsistency or conflict between
it and the assumptions or expectations that the agent has.
As defended by Reisenzein [28], Gardenfors [7], Ortony and
Partridge [25], etc., the result of this inconsistency gives rise
to surprise which in our model of selective attention and
according to previous studies plays a central role in selective
attention. It also gives rise to the process of updating beliefs,
called belief revision (e.g., [6]).

The representation of the memory contents (beliefs) relies
on semantic features or attributes much like in semantic
networks [31] or schemas [30]. Each attribute, attri,
viewed by us as a statistical experiment, is described
by a probabilistic distribution, i.e., a set Ai = {<
valuej , probj , desireStrengthj >: j = 1, 2, . . . , n}, where n
is the number of possible values of the attribute, P (attri =
valuej) = probj , and desireStrengthj is the desirability of
attri = valuej (for a related work see [29]).

While the belief strengths are inferred from data using
a frequentist approach and updated as new information is
acquired, the desirability of the outcomes can be previously
set up or learned based on the intentions and contexts of the
agent on which it depends, suffering changes whenever the
agent is committed with a new intention and/or in a new
context. For modelling this dynamics, we make use a desire
strength prediction model, i.e., a model for generating desire
strengths for all the outcomes of the statistical experiments
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of the world that are know given the desires of the agent, the
intentions, as well as the context of the user (for more details
see [5, 4]). As seen before, the desire strength is associated
with each attribute together with the belief strength.

Much like the motivation system of Clarion [35], the
module of desires encompasses explicit (goals) and implicit
motives (basic desires). Following the pluralist view of
motivation [22, 32, 37], the sub-module of basic desires
(basic motivations/motives) contains a set of basic desires
that drive the behaviour of the agent by guiding the agent
to reduce or to maximize a particular feeling [17]. Among
the basic desires we can find surprise and curiosity.

The module of feelings receives information about a state
of the environment and outputs the intensities of feelings.
Following Clore [3], we include in this module affective,
cognitive, and bodily feelings. The latter two categories are
merged to form the category of non affective feelings. This
means that this module is much broader than a module of
emotion that could be considered. Feelings are of primary
relevance to influence the behavior of an agent, because
computing their intensity the agent measures the degree to
which the desires are fulfilled. In this paper, we highlight
the feelings of surprise and pleasantness/unplesantness.

Although the architecture of the computational model of
selective attention includes all those above-mentioned sub-
selective attention modules, we reserve some room in the
architecture of the model for other sub-selective attention
components, such as coping potential, complexity.

The next sub-sections describe each one of the dimensions
for evaluating information, namely surprise, uncertainty,
and motive congruence/incongruence. While the dimensions
of surprise and uncertainty are related to the value of
information to the belief store of the agent, the dimension
of motive congruence/incongruence is related to the value
of information to the goals/desires of the agent (these
dimensions are related to the concepts of cognitive and
affective feelings of [3] and belief-belief and belief-desire
comparators of [29]).

2.1 Surprise Value of Information
We adopted the computational model of surprise of

[16, 19] which is formally defined in Definition 1 (for
related models see [18]). Macedo, Cardoso and Reisenzein
computational model of surprise suggests that the intensity
of surprise about an event Eg, from a set of mutually
exclusive events E1, E2, . . . , Em, is a nonlinear function of
the difference, or contrast, between its probability and the
probability of the highest expected event Eh in the set of
mutually exclusive events E1, E2, . . . , Em.

Definition 1. Let (Ω, A, P ) be a probability space where
Ω is the sample space (i.e., the set of possible outcomes of
the experiment), A = A1, A2, .., An is a σ-field of subsets
of Ω (also called the event space, i.e., all the possible
events), and P is a probability measure which assigns a
real number P (F ) to every member F of the σ-field A.
Let E = {E1, E2, . . . , Em}, Ei ∈ A, be a set of mutually
exclusive events in that probability space with probabilities
P (Ei) >= 0, such that

∑m
i=1 P (Ei) = 1. Let Eh be the

highest expected event from E. The intensity of surprise
about an event Eg from E is given by:

S(Eg) = log(1 + P (Eh)− P (Eg)) (1)

The probability difference between P (Eh) and P (Eg) can
be interpreted as the amount by which the probability of Eg

would have to be increased for Eg to become unsurprising.

2.2 Uncertainty-based Value of Information
Information is a decrease in uncertainty which, according

to information theory, is measured by entropy [34]. When
new information is acquired its amount may be measured
by the difference between the prior uncertainty and the
posterior uncertainty.

Definition 2. Let (Ω, A, Pprior) be a probability space
where Ω is the sample space (i.e., the set of possible outcomes
of the experiment), A = A1, A2, .., Am is a σ-field of subsets
of Ω (also called the event space, i.e., all the possible events),
and Pprior is a probability measure which assigns a real
number Pprior(F ) to every member F of the σ-field A.
Let E = {E1, E2, . . . , Em}, Ei ∈ A, be a set of mutually
exclusive events in that probability space with probabilities
Pprior(Ei) >= 0, such that

∑m
i=1 Pprior(Ei) = 1. Let

Ppost be the posterior probability measure, after some data
is acquired, which assigns a real number Ppost(F ) to every
member F of the σ-field A such that it assigns Ppost(Ei) >=
0 with

∑m
i=1 Ppost(Ei) = 1. According to information

theory, the information gain of an agent after some data
is acquired, IG(E), is given by the decrease in uncertainty:

IG(E) = Hprior(E)−Hpost(E)

= −
m∑

i=1

Pprior(Ei)× log(Pprior(Ei))−

(−
m∑

i=1

Ppost(Ei)× log(Ppost(Ei))) (2)

Hpost = 0 if and only if all the Ppost(Ei) but one are
zero, this one having the value unity. Thus only when we
are certain of the outcome does Hpost vanish, otherwise it is
positive.
IG is not normalized. In order to normalize it we must

divide it by log(m) since it can be proved that IG ≤ log(m):

IG(E) =
Hprior(E)−Hpost(E)

log(m)
(3)

2.3 Motive Congruence/Incongruence-based
Value of Information

While the measure of surprise takes into account beliefs
that can be confirmed or not, the pleasantness function that
we describe in this subsection takes as input desires that,
contrary to beliefs, can be satisfied or frustrated. Following
the belief-desire theory of emotion [29], we assume that
an agent feels happiness if it desires a state of affairs (a
proposition) and firmly beliefs that that state of affairs
obtains. The intensity of happiness about an event is a
monotonically increasing function of the degree of desire of
that event as formally defined in Definition 4.

Definition 3. Let (Ω, A) be a measurable space where Ω
is the sample space (i.e., the set of possible outcomes of the
experiment) and A = A1, A2, .., Am a σ-field of subsets of
Ω (also called the event space, i.e., all the possible events).
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We define the measure of desirability of an event on (Ω, A)
as D : A → [−1, 1], i.e., as a signed measure which assigns
a real number −1 ≤ D(F ) ≤ 1 to every member F of the σ-
field A based on the profile of the agent, so that the following
properties are satisfied:

• D(∅) = 0
• if A1, A2, . . . is a collection of disjoint members of A,

in that Ai ∩Aj = ∅ for all i 6= j, then

D(

∞⋃

i=0

Ai) =

∞∑

i=0

D(Ai) (4)

The triple (Ω, A,D) is called the desirability space.

Definition 4. Let (Ω, A, P ) and (Ω, A,D) be the
probability and the desirability spaces described, respectively,
in Definition 1 and Definition 3. Let E = {E1, E2, . . . , Em},
Ei ∈ A, be a set of mutually exclusive events in
that probability space with probabilities P (Ei) >= 0,∑m

i=1 P (Ei) = 1. If P (Eg) = 1, the intensity of happiness,
i.e., motive congruence, about an event Eg from E is given
by:

MC(Eg) = D(Eg) (5)

2.4 The Principle of Selective Attention
Having defined the motive, the uncertainty-based, and

surprise-based selective attention modules, we are now in
a position to formulate, in a restricted sense (without the
inclusion of other information measures such as complexity),
the principle that a resource-bounded rational agent should
follow in order to avoid an overabundance of information and
interruptions in the absence of a model for decision-making.
Note that if this model is known, the problem is reduced to
the classical computation of the value of information that
has been extensively studied (e.g., [8, 31]).

Definition 5. A resource-bounded rational agent should
focus its attention only on the relevant and interesting
information, i.e., on information that is congruent or
incongruent to its motives/desires, and that is cognitively
relevant because it is surprising or because it decreases
uncertainty.

We may define real numbers α, β, and γ as levels above
which the absolute values of motive congruency, surprise,
and information gain (decrease of uncertainty), respectively,
should be so that the information can be considered valuable
or interesting. These are what we called the triggering
levels of alert of the selective attention mechanism. Note
that, making one of those parameters null is equivalent to
removing the contribution of the corresponding component
from the selective attention mechanism (for a different
approach see Martinho and Paiva’s attention grabbing
mechanism [21] whose main feature is not relying on tuned
parameters but on expectation and prediction error).

3. PRACTICAL APPLICATION
The Selective Attention-based, Multi-Agent, Travel

Information System architecture (see Figure 4) we developed
involves a master agent and personal agents (for related
works on this domain see [1]). There is a personal selective

attention agent for each registered traveler. Each personal
agent models an user cognitively and motivationally and acts
on his/her behalf, i.e., each personal agent has information
about the expectations and desires of its owner based on
their travel history. The main role of the master agent is
collecting information from several information sources and
sending it to the personal agents so that they can selectively
deliver information to the several mobile devices owned by
humans.

Physically, the master and the personal agents might
inhabit in the same machine. This is the case of our system:
there is a server that accommodates both the master agent
and the personal agents. There is also an interface of the
personal agents that acts as a client and which is stored in
mobile devices owned by humans (see Figure 2).

(a) Main menu.
(b) Feedback menu.

(c) User context settings. (d) Selective attention filters.

Figure 2: iPOIs interface.

The Master Agent is responsible for starting, not only
the Web Agents, but also the Personal Assistant Agents
(PAAs), described in Figure 4 as PAA1 · · · PAAn. The Master

Agent is also responsible to reply the PAAs when they
ask for information about a specific POI. Although the
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system is capable of retrieving POIs’ information from
several location-based services such as Foursquare API1 (a
location-based social network) and Bing Traffic API2 (that
provides information about traffic incidents and issues, e.g.,
construction sites and traffic congestion), for the purpose of
this work only the Foursquare service is used, which explains
why in this work we used only one Web Agent (WAfourquare).
As it can be seen in Figure 2a, the system shows all the POIs
retrieved from the system, taking into account the current
user’s context and intention (Figure 3), as well as his/her
selective attention preferences (Figure 2d). Clicking in each
POI’s icon, the user can see an information window with the
expected surprise and information gain values associated to
the price, schedule and day(s) off. One of the most relevant
feature of this interface is the menu presented in Figure
2b, where the user is allowed to give feedback about the
expectations of his PAA.
WAfoursquare implements several methods available through

the Foursquare API3, allowing it to start requesting for
POIs in a pre-defined geographical area. During this
process, it filters out all the POIs that do not belong to
the categories of concern, and stores the remaining POIs
in the system’s database (presented in Figure 4 as POIs

Database). This autonomous agent is constantly searching
for new information, and verifying if the data stored in the
database is up-to-date.

Context is the key to personalise recommendations made
by the PAAs for their users. Thus, a set of attributes need
to be defined in order to characterise the POI’s context,
as well as the user’s context and intentions. Since these
attributes need to be combined, an Android application,
named iPOIs, was been created to this purpose, i.e., to show
the current user location, his context and intention. The
main attributes used to define the user, the POI and the
information available in the interface are shown in Figure 3.

POI

category

dayOff

latitude

longitude

price

timetable

iPOIs application

distanceToPOI

currentTime

user

budget

dayOfWeek

intention

latitude

longitude

timeOfDay

Figure 3: Main attributes used to define the context of the
user, POI and the iPOIs application.

Possible values for each attribute of the POI’s context are:

• category = {food, shopping, nightlife},
actually we use the sub-category, e.g., food =
〈sandwichShop, vegetarian, etc.〉, shopping =
〈men’sApparel, women’sApparel, etc.〉 and
nightlife = 〈wineBar, disco, etc.〉

• dayOff = {a day of the week or combinations}

1https://developer.foursquare.com/
2http://msdn.microsoft.com/en-us/library/hh441725
3https://developer.foursquare.com

POIs
Database

user%s&selective&
a-ention&model

PAA_1

Master/Agent

PAA_n

User_n

WA_foursquare

User_1

...

...

...
WA_n

POIs' resources

user%s&selective&
a-ention&model

POIs' extra
information

recommendation/
feedback

recommendation/
feedback

Figure 4: System’s Architecture.

• price = {cheap, average, expensive}, e.g.,
for lunch {cheap≤5e; 5e>average≤7e;
expensive>7e}

• timetable = {morning, afternoon, night, or

combinations}

Possible values provided by the iPOIs interface are:

• distanceToPOI = {near≤ 200m; 200m >average≤
300m; far> 300m}

• currentTime = {current day of the week and

period of the day (morning, afternoon or

night)}

Possible values for each attribute of the user’s context are:

• budget = {low, medium, high}, e.g., for lunch
{low≤5e; 5e>medium≤7e; high>7e}

• dayOfWeek = {current day of the week}
• intention = {coffee, lunch, dinner, party},

e.g., drink coffee
in a {bakery, coffeeShop, etc.}, have lunch
and dinner in {burgers, BBQ, etc.} and party
in a {bar, disco, etc.}

• timeOfDay = {morning, afternoon or night}

Let us illustrate how the value of information is computed
by the selective attention mechanism. Suppose that a
traveller’s navigation system provided the information of a
specific POI, a restaurant denoted by A, for an agent (that
represents a driver) based on its profile (e.g., preference for
cheap restaurants). Suppose the agent has the following
expectations for the price of POI A, for a certain period/time
of the day for a certain day of the week: 60% of probability
of ”low price” (event E1), 30% of probability of ”moderate
price” (event E2), and 10% of probability of ”high price”
(event E3). Suppose the desire strengths of these events
are 1, -0.5, and -1, respectively. What is the relevance of
becoming aware that the price of restaurant A is low (event
E1)? Considering solely the motive-based component, the
outcomes (events E1, E2, and E3) elicits happiness (motive
congruence) with intensity 1, -0.5 and -1, respectively. E1 is
congruent/consistent with the goals of the agent, while E2

and E3 are incongruent with the goals of the agent.
According to Equation 1, the surprise value of E1, E2,

and E3 are, respectively, 0, 0.38, and 0.58. Illustrating for
the case of E3:

Proceedings of 8th International Workshop on Agents in Traffic and Transportation ATT 2014

60



Surprise(E3) = log(1 + P (E1)− P (E3))

= log(1 + 0.6− 0.1) = 0.58 (6)

According to Equation 3, the normalized information gain
value of E1, E2, or E3 is:

IG(E) =
Hprior(E)−Hpost(E)

log(m)
=
Hprior(E)− 0

log(3)

=
−∑3

i=1 Pprior(Ei)× log(Pprior(Ei))

log(3)

= 0.82 (7)

Assume the Principle of Selective Attention described
above, with parameters α = 0.3, β = 0.5, and γ = 0.6.
Are all these events interesting? Considering the motive-
based component all those events are interesting. However,
from the perspective of the surprise-based selective attention
component, the answer is ”no” to the question related with
the events E1 and E2 in that their surprise values, 0 and
0.38, respectively, are below β. With respect to E3 the
answer is ”yes” given that its surprise value is 0.58. Taking
the uncertainty-based component into account, the answer
is ”yes” for all the events because their occurrence gives a
normalized information gain of 0.82 which is above γ.

By filtering out information that seems to be
uninteresting, the selective attention mechanism prevents
an agent (and also its owner – a driver in this case) from
being interrupted so many times as in the absence of the
selective attention mechanism and consequently prevents
its reasoning/decision-making resources from dealing with
irrelevant information. But, is the quality of the decisions
of the driver affected by not receiving that presumably
irrelevant information? In other words, was the suppressed
information erroneously considered as irrelevant? If the
answer is ”yes”, we have a false negative. This error occurs
when we are making a negative inference which is actually
true. In the above example, if the information of the
occurrence of E3 was not revealed, the driver would have
stopped and enter restaurant A that might be less useful
than an alternative. The reverse can also happen: was the
provided information erroneously considered as relevant?
If the answer is ”yes”, we have a false positive or false
alarm. This error occurs when we are making a positive
inference which is actually false. This problem of knowing
the correctness of preventing an interruption is quite similar
to errors type I and II of statistical hypothesis testing. A
reasonable empirical way to answer these questions is by
comparing the classifications of the selective attention agent
to those of humans. This is the main goal of the experiment
described in the next section.

4. EXPERIMENT
We conducted an experiment to evaluate the performance

and the potential benefits of the personal selective attention
agent for filtering unnecessary information for its owner (a
human traveler). To do that we assessed its performance
considering the opinions of the human travelers, comparing
their classifications about whether some information is
relevant or not and the classifications of the selective
attention agent. The selective attention agent is considered

to perform erroneously if it filters a relevant information or
if it does not filter an irrelevant information.

The experimentation was performed in downtown of the
city of Coimbra, Portugal, which is characterized by a
high density and diversity of POIs. Furthermore, the type
of POIs considered were restricted to {Food, Shopping,

Nightlife} which are among the more frequent categories
in that region of the city. The number of sub-categories for
Food are 44, Shopping 8 and Nightlife 11, with 271, 10

and 84 different POIs, respectively. The extra information
manually gathered from these 365 places was the POI’s
price, the day off and the timetable.

This experiment can be divided into three different
evaluations. Firstly we made a manual evaluation, to
analyse the true relevance of the recommended POIs, and
calculated the exact agreement between the human judges.
Then, we performed a correlation analysis to compare the
selective attention values given by the PAAs with those of
the manual evaluation. Finally, we analysed the system
performance.

To test our approach, we used a set of real scenarios.
More precisely, in this experiment we used three different
locations with higher POIs density. The information
of these different locations was combined with different
situations (i.e., different user’s contexts and intentions).
Each one of these combinations is called a run.
For instance, r1 = [40.208934, -8.429067, Morning,

Sunday, Coffee] represents one of those runs in which it
can be seen the user’s GPS location, time of day, day of the
week and intention/goal. In this experiment, we analysed
13 runs in a total of 65 evaluated POIs4:
• 5 runs, goal: drink a coffee (25 evaluated POIs);
• 2 runs, goal: have lunch (10 evaluated POIs);
• 3 runs, goal: have dinner (15 evaluated POIs);
• 3 runs, goal: go party (15 evaluated POIs).

To perform this evaluation, we used the interface of the
iPOIs application, illustrated in Figure 2.

We asked 9 human judges to rate some POIs attributes
about the surprise and uncertainty-based value. The
attributes evaluated in the experiment were the POI’s price,
the POI’s schedule, the POI’s day(s) off and the POI as a
whole. Each human judge was asked to assign one value
to these attributes, considering their information gain and
surprise, using the scale ∅ to 5, where ∅ means that there
was no information gain (regarding its uncertainty-based
value) or no surprise (regarding the surprise intensity). We
then calculated the exact agreement (EA) between the human
judges used to calculate the coefficient correlation with the
values of surprise and information gain computed by the
artificial agents.

The EA among the judges (EA: 0%≤ EA≤ 100%), for all the
data evaluated, is presented in Table 1, where the attributes
price, schedule, day(s) off and all the attributes together are
presented as Price, Sche., D.Off and All, respectively.

Table 1: Exact agreement between the human judges.

Information gain Surprise

Price Sche. D.Off All Price Sche. D.Off All
100 98.58 97.61 100 100 97.61 96.64 100

The parallelism between the exact agreement of humans

4This evaluation, in average, took approximately 1 hour.
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and the uncertainty and surprise-based values computed by
the artificial agent about the POIs’ attributes was quantified
by Spearman’s coefficient. This correlation coefficient give
us an idea on how these variables are correlated.

Table 2 shows these correlation coefficients between the
EA, given by the human judges, and the uncertainty and
surprise-based values computed by the artificial agent for
the four types of attributes considered, through the 13 runs.
As it can be seen, the results are promising. Although this
means that there exists a positive correlation in general,
some of them do not have a strong correlation value (for
instance, the surprise value for the POI’s attribute price).
This happens due the fact that the price was not so
surprising to the judges than the day(s) off. For example,
when the agent presents similar surprise expectation values
to cheap and average and the POI’s price is cheap, the judges
do not gave a high surprising value to this information. On
the other hand, the judges gave a high surprise value when
the POI is closed and the agent presents a low surprise
value to that specific day(s) off. The opposite occurs to the
importance that the judges gave to the uncertainty-based
value of the price.

Table 2: Correlation between the EA and the selective
attention models.

Information gain Surprise

Price Sche. D.Off All Price Sche. D.Off All
0.8459 0.4036 0.4218 0.6321 0.2557 0.5811 0.5218 0.4901

Finally, in the third part of the experiment, we performed
an information retrieval task, where the uncertainty and the
surprise components (named α and β, respectively) was used
to analyse the system’s performance. To do that, we used
the α’s and β’s average (i.e., α and β), from the 13 runs, for
the four POI’s attributes analysed in this work. To measure
the quality and the quantity of POIs correctly selected,
precision, recall and F1 were computed in the following
manner:

Precision =
Selected correct POIs

Selected POIs
(8)

Recall =
Selected correct POIs

Total correct POIs
(9)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(10)

For each component, Table 3 presents the resulting
precision, recall and F1 scores (expression 8, 9 and 10)
and the respective α’s and β’s used, where the attributes
price, schedule, day(s) off and all the attributes together are
presented as Price, Sche., D.Off and All, respectively.

As it can be seen, the selective attention components
performed similarly regarding the distinct attributes.
Nevertheless, the F1, on average, for the α component is
higher than the F1 average for the β (≈74.90% and≈62.36%,
respectively), which means that the uncertainty-based
component performs better than the surprise component
on average. Even though some of the F1 values show
low performance (e.g., the attribute price with β=0.9542
(34.78%)), most of them achieve high F1 (e.g., the attribute
price with the α=0.0625 (93.75%) or the attribute schedule
with the β=0.9180 (81.97%)). These results are promising,

Table 3: System’s performance for the two selective
attention components, with their respective α and β.

Precision (%) Recall (%) F 1 (%)

P
ri

ce α=0.0625 90.90 96.68 93.75
β=0.9542 24.24 61.54 34.78

S
c
h
e
. α=0.0975 93.93 52.54 67.39

β=0.9180 75.75 89.29 81.97

D
.O

ff α=0.0469 96.97 55.17 70.33
β=0.9342 60.61 83.33 70.18

A
ll α=0.0646 93.94 53.45 68.13

β=0.9429 45.45 100 62.50

supporting the idea of applying a computation model
of selective attention into location-based services, as an
alternative or an extension of traditional recommender
systems.

5. CONCLUSIONS
We presented an approach for filtering unnecessary

information. We found evidence indicating that the
mechanism contributes for decreasing the amount of
unnecessary information while maintaining acceptable the
performance of the owner (a human).

Besides, agents equipped with a selective attention filter
can be successful personal assistants of humans, integrated
for instance in mobile devices, so that their human users are
prevented from unnecessary interruptions. This may be of
high value in critical situations such as driving a car in that,
as reported by [8], numerous cognitive studies have provided
evidence of the problems in information processing exhibited
by humans when dealing with large amounts of information
such as that the speed at which humans perform tasks drops
as the quantity of information being considered increases,
and that the rate of performing tasks can be increased by
filtering irrelevant information.
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ABSTRACT
Smart and social mobility services will soon hit the streets
of our cities. However, most of existing solutions so far are
built through different operations that don’t lie on the same
processing flow, neither don’t share with each others their
input data streams. The understanding of how to design
a general-purpose framework, supporting a variety of inte-
grated services and promoting direct users involvement, is
still missing. In this paper, we first show our conceptual vi-
sion of smart mobility services, focusing on the cooperation
and interoperability of the actors involved. We then analyze
the infrastructural requirements to enable such smart mo-
bility services and present the characteristics of a general-
purpose framework for the provisioning of smart mobility
services, conceived as a distributed and open agent coordi-
nation infrastructure. To exemplify, we show how the frame-
work can be applied in the context of an urban ride-sharing
service.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Coherence and coordina-
tion, Multiagent systems

General Terms
Algorithms, Design

Keywords
Socio-technical System, Pervasive Computing, Smart Mobil-
ity Services, Agents Coordination, Ride-sharing

1. INTRODUCTION
The dramatic progress in embedded and mobile comput-

ing technologies, smart phones in primes, along with the
pervasive diffusion of social networking tools, let us envision
the emergence of a dense networked ICT infrastructure. In
such infrastructure, coordinated human agents (i.e., the cit-
izens) and software/hardware agents will interact with each
other in such infrastructure so as to serve – at the same time
– individual-level and urban-level goals, as if they were part
of a single socio-technical system.

The overall behavior of such system will be driven by a
variety of urban services which aim to improve the overall
quality of life of individuals by providing them with tools
to better interact with the urban environment, and also by
shaping the activities of the urban environment itself, to suit
their own needs.

One can consider a completely distributed software archi-
tecture deployed over individuals on their smart phones and
over hardware sensors and actuators. However, a central-
ized entity able to continuously monitoring and redirecting
the behavior of the agents will facilitate the dealing with
city-scale problems.

The future pervasive urban services will be supported
by bringing at work together the complementary sensing,
computing, and actuating capabilities of the interconnected
agents, and by closing them in a feedback loop (see Figure
1). After an initial learning phase in which raw data from
sensors are collected, processed and classified, the agents will
be skilled with context inference and anticipatory comput-
ing capabilities, as examples, and they will suggest tailored
recommendations to the hardware actuators and to them-
selves. Closing these capabilities in a loop lets measure the
goodness and the adoption rate of the suggested recommen-
dations, by making clear their causal relation with the ef-
fects they generate. The process results in the generation
of awareness, which can describe both individual and collec-
tive characters, related respectively to single agents and to
a collection of those [3].

Figure 1: The sensing-understanding-acting feed-
back loop enabled by agents coordination.
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This work focuses on smart mobility services enabled through
the sensing-understanding-acting activities of the agents in
the improvement of urban mobility. That is, to increase the
effectiveness of individual mobility while at the same time
improving the overall urban mobility (see Figure 2).

Human agents will play a fundamental role in the de-
ployment of mobility services, since they can act both as
consumers and as providers (e.g., via their private cars or
simply by supplying information) of the services. Human
social interactions can be pushed through a precise dynamic
orchestration of the enabled data streams coming from both
humans and ICT devices.

Our contributions are grounded on presenting how, in the
scenario introduced above, the provisioning of integrated
smart mobility services, can be effectively realized by a specif-
ically suited coordination framework. Such coordination
framework will be proposed as capable of supporting the
iterative closed process of:

• Detecting mobility events related to the moving agents
on the infrastructure, by harnessing the surrounding
portion of the mobility data network shaped by the
infrastructure itself, and also by processing the stream
of incoming requests for mobility services;

• Identifying the possible solutions to satisfy expressed
mobility needs based on the current state of things and
of requests; anticipate future situations and future (or
latent) mobility needs;

• Putting in act the necessary actions on actuator agents,
or persuade human to act in certain ways, so as to end
up realizing a coherent and sustainable set of services
to satisfy the recognized needs.

Figure 2: Smart mobility services enabled by agents
coordination.

We believe, a general-purpose coordination framework that
supports the shaping and the provisioning of smart mobil-
ity services will represent a powerful tool for urban design-
ers and city administrators to make urban mobility services
more efficient in terms of cost of the infrastructure (by har-
nessing the same sensors and actuators that self-reconfigure
themselves upon specific requests, as well the same software
architecture) and amount of data collected and processed

(by sharing them among services with different purposes,
instead of replicating similar operations for each service).
Furthermore the provisioning of integrated solutions for dif-
ferent mobility needs can increase their individual adoption
rate, towards the aim of reaching a critical mass of users,
and thus can increase their effectiveness.

The contributions of this paper are to introduce our con-
ceptual vision of what smart mobility services can be (Sec-
tion 2), identify a set of infrastructural requirements for a
general-purpose agent coordination framework (Section 3),
sketch a conceptual model of the coordination framework
for smart mobility services (Section 4), and introduce a use
case in the area of ride-sharing (Section 5).

The paper also shortly discusses related works (Section 6)
before concluding (Section 7).

2. SMART MOBILITY SERVICES

2.1 From ITS to smart mobility services
The recent dramatic progresses in ICT technologies, have

led to the emergence of a very broad area of research in
Intelligent Transportation Systems (ITS). ITS, in general,
represent the most advanced way to establish a real-time
transportation management, and consists in harnessing ICT
technologies to better address users mobility needs and to
support urban authorities decisions [1, 29].

ITS aim to improve urban transport performance, and
can address in turns the problems and issues of pedestrians,
cyclists, private vehicles, public transports, and roadside in-
frastructures. However, the application of ITS is often lim-
ited to the provisioning of on-demand web-services, with lit-
tle or no interactions between users and contributions from
user themselves. Furthermore, ITS do not offer a unified
and integrated approach to support urban mobility in all
its aspect, and often they own independent approaches for
different mobility needs.

In general, the shift from ITS to smart mobility services
must pursue the desired comfort for citizens and the satis-
faction for urban authorities at the same level, by improving
traffic efficiency and road capacity on the transportation net-
work at an integrated, global, level. The services focus to
impact on the development of increased social participation
of citizens, where they are no longer simply requestors of
mobility services, but can in turn play a role in the provi-
sioning of services. Such an endeavor can feed cooperation
and sharing practices with incentives and regulations.

Smart mobility services consist of all the mobility solu-
tions enabled by pulling data from the available set of agents,
generating higher information out of them, and enabling
potential social interactions between a set of agents. The
utility information is returned to them in such a way as to
reinforce their interaction.

Citizens with mobility needs receive recommendations built
on the matches with the services provided by other citizens,
thanks to the supporting ICT infrastructure. Such recom-
mendations can be strengthen if users have a similar profile,
especially in terms of collaborative behavior. Data from
social networks can detect social communities with same in-
terests and mobility habits [5, 33]. The system will monitor
the eventual adoption of the recommendation, and its effec-
tiveness (was the service actually available?). Finally, it will
update the profiles of the involved agents, to provide more
useful recommendations in the future.
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2.2 Example of smart mobility services
Let us now see some examples of such smart mobility ser-

vices:

• Parking Match. A driver is approaching her desti-
nation and tries to find a vacant parking space. Some
time earlier, another driver has left a parking lot in the
same area. A parking match takes place and the driver
is reached by a parking recommendation. Data in-
volved in the matching process can come directly from
the users involved, from the parking sensors installed
on the infrastructure, or on users vehicles [22, 21].

• Itinerary Match. Consider the concurrent presence
of the same users in a given set of locations at different
times. When a spatio-temporal analysis on the data re-
veals that such co-location happens regularly (as seen
in [8, 16]), it identifies a possible pool of commuters
that make similar trips. The system should persuade
them to switch to carpooling, making them aware of
the benefits they have. Available carpooling services
show how struggling is to reach a critical mass, hence
social incentives are crucial (some carpooling issues are
presented here [14]).

• Taxi Match. A taxi is hailed on the street by a per-
son. While the driver is moving towards client’s desti-
nation, he shares his route with other people that are
looking for a ride (as described here [20]). If someone
with a compatible trip ask for a ride, then taxi ser-
vice becomes shared. Thus, its cost is lower for the
clients and the revenue increase for the taxi driver.
This service could seem similar to the previous one,
but it mainly differs in terms of how the matches take
place. The Itinerary Match mainly evaluates historical
trips and habits, the latter considers real-time data.

• Multimodal Rides Match. A person explicitly de-
clares a destination from her starting location, asking
for directions. A selection of a spatio-temporal por-
tion of data streams occurs. Multimodal directions can
be provided to reach that destination. Current traf-
fic level and rides availability (from multiple means of
transports) on the transport network is evaluated and
several complex pattern matching mechanisms are put
in place to shape the best multimodal way to reach
the destination. Several approaches come from Oper-
ational Research [10, 4]. In [9], authors have consid-
ered ride-sharing as a complementary solution to usual
means of transports in multimodal trip planning.

• Chaperone Match. Parents cannot bring their chil-
dren to school every morning and they might find dif-
ficult to bring them back home when classes are over
as well. When no other relatives or friends can look
after a child, one can consider to share the path the
child is going to follow, at a certain time, to look for
someone that takes charge of assessing the presence of
the child at intermediate checkpoints (e.g., a bus stop,
a crossing, a public display, a store). Hardware sensors
and reliable citizens located close the checkpoints can
act as proximity probes and thus they can send actual
feedback in real-time to the parents, and of course they
send alerts when an unexpected event will occur.

The above examples in any case see a clear distinction
between provider and requestor of a service, and consider
that providers of a service are not influenced by the request.
However, in a really integrated system, the mean to provide
a service can be dynamically shaped upon the request, in a
process of mutual influence. Indeed, those who provide a ser-
vice is because they have a need to satisfy. It is thus possible
to let the distinction between requestor and provider van-
ish, and dynamically adapt the shape of services depending
on the need, also with some supra level objectives in mind
behind the opportunistic self-interest of the involved parties.

3. INFRASTRUCTURAL REQUIREMENTS
Next generation smart mobility services should be pur-

sued by settling some infrastructural requirements on its
components. These requirements can determine the tech-
nical viability of smart mobility services deployment.

Interconnection. Based on the Internet of Things paradigm
[2], the agents that populate the urban environment need to
be connected and able to exchange messages each others.
The distributed network of humans and ICT-devices will
enable sensing, computing, and actuating capabilities only
if information can flow seamlessly among a defined set of
entities, despite network dynamics, and made ephemeral.

Heterogeneity. The inter-connected components of the
ICT infrastructure are highly heterogeneous. This feature
has not to be considered its weakness. We have to take
advantage of their complementary role in knowledge mining.
As example, one can consider a fixed entity on the roadside
acting as a traffic sensor (e.g.: smart traffic light, CCTV
camera). The data collected can be enriched with the one
provided by mobile agents (e.g.: pedestrian, cars, buses),
and hence its interpretation is made easier. Events detection
and anticipation accuracy can improve as well.

Interoperability. Interoperable agents encourage com-
bination of concurrent data streams from different locations,
enabled in precise spatio-temporal patterns. Our coordina-
tion framework is based on the orchestration of such different
data sources, dynamically selected due their complementary
role, according to the incoming requests. Nevertheless, en-
ergy saving and classification accuracy should imply specific
conditions that drive the concurrent activation of certain
data sources and classifiers as well.

Individual tasks. Each agent has to share her knowledge
among a collection of agents that provides complementary
skills to her ones, in order to (i) ”measure” the context of
the surrounding environment, (ii) infer a certain situation,
so become aware that is happening something relevant, (iii)
and finally adapt the behavior of the actuators accordingly.
Human actions and interactions are crucial during the whole
process, and they can be tracked by explicit or implicit sens-
ing of data through both personal devices like smart phones
or smart vehicles, and through public interactive displays.

Collective intelligence. The brain of the system needs
a software architecture designed by balancing a top-down
and a bottom-up approach. The first usually results in very
predictable and measurable systems that lack in reactivity
in high dynamic contexts. The latter suits to cope with per-
vasive computing in decentralized systems, which their be-
havior is not always predictable, nor easy to be engineered.
Collective intelligence can emerge from the reasoning and
the collaborations among decentralized agents that aim to
process individual and collective contents.
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System safety. The system should own only a finite set
of reachable states, which should be known in the design
phase, and tested during the development. The aim here,
is to avoid risks related to the eventual system’s evolution
towards uncontrolled situations. To enable this feature we
need to own a deep understanding of system dynamics, and
how to deal with them. In other worlds, citizens should feel
safe to contribute in social collective intelligence initiatives,
because they trust the system and its potentials, and find it
useful in any circumstance.

Information propagation. The inferred information
should pervade the nodes of the infrastructure till it can ac-
tually reach any potential agent that can be interested in
it. Data should be packed in efficient structures, and routed
via peer exchanges. A middleware architecture can be har-
nessed to reach these goals, and thus to support the purpose
of the coordination framework, which is expected to become
active supporter of agents interactions and facilitator of in-
formation propagation [7].

Data management. Big amount of spatio-temporally
distributed and heterogeneous data will be concurrently eval-
uated by computing-enabled devices, at different stages. Thus,
efficient storage, querying, and analysis practices are needed.
Academic literature offers as many cues as many approaches
it presents ([23], and [19] among the others), but a unified
best practice is missing.

Users privacy. Discovering matches between needs and
services implies computation on sensitive data coming from
the set of agents. This task can contemplate the sharing
of confidential information among them. Privacy concerns
and sharing policies must be dealt on user agreements and
should consider innovative practices to balance the value of
the data shared with the value expressed by service enabled
through the sharing of someone else [13]. One should be
able to opt-out from collecting certain data once they could
evaluate the purpose of that collection, the sharing rules,
and the service(s) that could be enabled thanks to it.

4. CONCEPTUAL MODEL
As shown in Figure 3, the framework grounds on a match-

ing engine that processes several data streams from a dense
distributed tuple space, which is made of information con-
cerning mobility status, requests, and services, generated by
the agents on the mobility network. The rationale of the
matching engine is triggered by incoming mobility requests,
which in turns drive continuous processing steps. After sev-
eral computing iterations on the available relevant informa-
tion, the matching engine discovers and builds services on
the mobility network, which finally result in mobility recom-
mendations for the requesting user.

4.1 Distributed Tuple Space
Agents on the mobility network can implicitly or explic-

itly generate contextual information related to their mobility
status, requests, and services. We believe a middleware in-
frastructure based on a set of networked tuple spaces [28]
could represent a viable and suitable solution to store and
share knowledge among all the agents interested in some
particular generated contents, as well to properly feed the
matching engine with the necessary information.

In particular, in the current demonstrative implementa-
tion of our infrastructure, we have built our coordination
framework by exploiting the SAPERE tuple-based infras-

Figure 3: Conceptualization of the coordination
framework that matches mobility services with mo-
bility requests. Agents on the mobility network in-
clude humans and ICT sensors-actuators such as
smart traffic lights (which count the approaching
vehicles) and smart signals (which change the dis-
played information). Data streams are dynamically
selected and processed through the matching engine.

tructure [31, 32]. SAPERE has the following characteristics
that make them suitable to implement our proposed coordi-
nation infrastructure;

• It integrates an advanced and semantic pattern match-
ing mechanism which can act as the basic building
block to realize advance matches between mobility re-
quests and offers;

• SAPERE defines a context-aware and spatial tuple
space model, where one can adopt context-aware and
spatial rules to dynamically select, evaluate, and prop-
agate information, which is particularly suited to the
area of mobility;

• SAPERE can associate specific middleware agents to
react to events occurring in the network of tuple spaces,
which can be used (and has been used, indeed) to real-
ize advanced and multifold matching mechanisms, as
described in the following subsection.
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4.2 Matching Engine
The matching engine concept can be described through

the definition of a set of sub-activities, each of which has
been implemented as a SAPERE middleware agents. A de-
scription of the iterative phases that compose the matching
engine follows.

Data pre-processing and spatio-temporal aggrega-
tion. At a first place, incoming data is filtered, cleaned
and aggregated. The process of course needs a consider-
able amount of data, collected over time, until this activity
results in meaningful content for the engine. At further iter-
ations, each incoming raw data will be filtered, cleaned and
aggregated again, according to spatio-temporal constraints
of the incoming request.

Data modeling supports upper-level meaning abstractions,
by generating complex data structures useful to understand
a special mobility pattern of the considered agents.

Mobility pattern recognition and events detection
and foresight. Machine learning techniques enable regular
patterns identification and anomalies detection on the aggre-
gated input data. Really well trained classifiers can perform
effective anticipatory computing [24] that can be crucial in
dynamic environments.

Not only agents on the move own mobility patterns (in-
ferred, as example, by mining their mobility routes from
GPS data). Roadside sensors can shape the mobility status
on the mobility network as well, and so they let creation
of tuples that characterize the mobility context of a geo-
fenced area in a specific time interval. So, it is clear that it
will be possible to detect and anticipate the occurrence of
significant mobility events and have a real-time distributed
representation of them.

Agent and collaborative group profiling. Each en-
tity on the network is characterized by its own capabilities,
which let it play specific activities with proper tasks, which
are, in turns, driven by the nature of the entity itself. These
conjectures bring the necessity to model agents behavior to
the foreground (the Belief-Desire-Intention (BDI) model [26]
is one of the approaches suggested by the literature in this
field). The distributed tuple space should be populated with
profiling contents related both to individual agents and to
groups of them.

Interactions among group of agents is actually a crucial
aspect to model. A survey with some proposals is presented
in [6]. Humans interactions offers a good starting point in
collaborative behavior understanding. The discovering of
interaction reasons, modes, and effectiveness is pursued, in
order to bring collaboration aspects to the shared knowledge.
In order to motivate users in deeper collaborations, behav-
ioral changes can be stimulated through tailored incentives
and mechanisms taken from persuasion theory [11].

Recommendations and feedback impacts. Once the
engine is able to infer the up-to-date context of the agents,
the process goes on to the evaluation of which mobility
events can be useful in addressing mobility requests. The
set of identified alternatives is then sent to the requesting
user, as recommendations, in the form of available services.

A similar mining can be performed when a reconfiguration
of the ICT components on the mobility network is needed.
Consider, as example, the increase of the sampling rate for
a traffic sensor, according to the increase of variation in
the traffic level measured. In that case, the granularity of
the data collected should be increased. Hardware sensors

and actuators have to be solicited with the optimal self-
reconfiguration rules.

We believe the closing loop lets a profitable feature to
come out from the coordination framework. It determines
the continuous learning of the system, which becomes aware
of how effective has been the mobility recommendations ex-
changed among the agents, and which benefits are generated
thanks to them.

5. CASE STUDY EXAMPLE
To evaluate the effectiveness of the proposed coordina-

tion framework in the provision of smart mobility service,
we have developed a set of algorithms that aims to repro-
duce the main conceptual activities involved in the matching
engine described above.

We have focused our efforts on an Itinerary Match service,
as described in Section 2. Our aim is to evaluate potential
matches between mobility requests and offers. Commuters
with a similar typical daily route should be detected and
recommended to join ride-sharing opportunities. Of course,
the framework should support the provisioning of integrated
services, but our work is still on an initial stage and our
testings have been delimited in shaping a single service.

Even if our framework is expected to collect real-time
data, coming from the distributed tuple space, we have un-
dertaken an offline experiment, by simulating the matching
engine activities on a large dataset previously collected.

Raw data involved in our study covers one week of detec-
tions in the city of Turin, and it consists in Call Descrip-
tion Records (CDRs) collected by a mobile network opera-
tor, through the cellphone network. However, one can as-
sume that data can be collected opportunistically from a set
of drivers, through an application installed on their smart-
phones, and propagated on the nodes of the infrastructure.

Basically, each time a user performs data exchange on the
Internet, starts a call, or sends a text message, a spatio-
temporal record is created. Each occurrence contains the
user’s identifier (who makes it happen), the location of the
antenna related to the network cell (where it has happened),
and the timestamp (when it has happened).

5.1 Towards agents classification
According to the conceptual model of the coordination

framework, the first step involves an initial pre-processing
of raw data. In our case study, we have filtered data in a
way that tries to exclude non-commuters. In particular, we
define commuters as all the users that generate at least one
event in both a pair of enough distant geographic zones (let
us call them A and B), during working days. Furthermore,
we have narrowed our definition of commuters by consider-
ing two particular regions to perform that filtering. We want
to study urban mobility, so we have considered an area that
covers the inner part of Turin as the zone A (about 100Km2
wide), and a geo-fence of a broader zone (about 3000Km2
wide), which surrounds the city center (suburban area), as
the zone B. We have not made any consideration on the
mean of transportation used by the users, because the input
data is too fragmented and sparse. Best practice to suc-
ceed in this activity consists in excluding all the commuters
that are used to move along railways, cycling paths, metro
stations, or bus stops.

Next phase has involved the spatio-temporal aggrega-
tion of the selected CDRs into mobility traces.
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We were interested in modeling data into upper-level mean-
ing abstractions, useful to better understand mobility pat-
terns of the considered users. We define a mobility trace
as the conjunction of a pair of temporally adjacent events,
which represents the origin-to-destination path covered by
a certain user in a defined temporal interval. This process
has resulted in the detection of sequential mobility traces
(the destination of the first matches with the origin of the
second) that can cover wide areas and time intervals.

Each user is characterized by a set of mobility traces
that can be reduced in length by doing some further spatio-
temporal aggregation. The aim here is to compress the
amount of data linked to each user, by merging the mobility
traces through their sequential relationships (in both spa-
tial and temporal domains). Thus, they shape brand new,
more extended, mobility traces. The amount of merging
occurrences has also been stored in the resulting mobility
trace. Spatial proximity has been computed on the pair of
geographical points that characterize the origin or the des-
tination on the pair of the involved traces. This is easy to
compute with a point-to-point distance formula (e.g.: haver-
sine, euclidean). Temporal closeness has been computed on
the time interval associated to the same pair of mobility
traces. This task is more tricky and it concerns the eval-
uation of several temporal relations. In our case we have
followed the ones presented by Van Beek and Manchak [27].

For each user, the mobility pattern recognition phase
has contemplated the inference of the most visited mobility
path described by the mobility traces. In particular, this
process has first resulted in the application of a K-means
clustering algorithm on the spatial dimension of the mobility
traces. The evaluation of the clustered points has been done
on the amount of occurrences related to them. Only the
two most populated clusters have been evaluated (origin and
destination candidates). The typical daily route of each user
has been discovered. Figure 4 shows an extract of the daily
routes in a 1-hour time lapse.

We formally define a daily route as the most frequent out-
ward plus the most frequent inward mobility traces gener-
ated by the same user from/to an origin to/from a desti-
nation. Actually, our daily routes mining has returned a
significant result only for the 10% of the considered users,
since most of the results have revealed the same amount of
occurrences on multiple candidates in the same cluster (too
much ambiguity on the data). We think this sudden loss of
significance can be tackled by evaluating more temporally
distributed data (one week of CDRs collection does not pro-
vide enough significance to our study).

The user’s typical daily route can be useful to detect
and anticipate mobility events. As examples:

• it describes the daily journey the user is used to per-
form, and so it represents a daily event itself;

• it reveals the expected presence of an agent on the
underlying road network, during a certain time span;

• it can be harnessed to anticipate any expected traf-
fic congestion on the underlying road network at a
certain time;

• it lets to locate a moving probe that can be queried
just in case in the future to detect mobility status
and alerts.

Figure 4: Partial representation of the users daily
routes in the city center of Turin at a given time
interval.

The contributions provided by each agent, wether it is a
requesting agent or that it is a potential service provider,
have been used to classify them, by creating their agent
profile (in the distributed tuple space) with classifying la-
bels and higher information contents.

5.2 Towards agents recommendation
Each agent profile is related to a commuter, and it ini-

tially contains only information about its daily route. In
a real case scenario it can additionally include agent’s per-
sonal details (such as demographics and interests) that can
be collected through online social networks, its mobility pref-
erences (such as its usual mean of transportation, and its
willingness to do ride-sharing), the most likely home and
work locations, its belonging to a same group of agents (due
their commute similarities), and the most relevant histor-
ical events detected. Furthermore, one can think to add
a ranking information to the agent profile that quantifies
how much it has been involved in crowdsourcing and col-
laborative initiatives. This data can narrowly reflect social
interactions among agents and their resulting benefits.Thus,
it can outline the rise of collaborative group of agents.

As our next step, mining pool of users with similar daily
routes has been done through an exhaustive search on all the
users, by assuming that they were currently moving alone
in a private car with 5 seats capacity. Each user should ex-
press at the same time its availability in offering ride-sharing
services, and its necessity to find more efficient mobility so-
lutions (in terms of vehicle occupancy rate). Our study has
been limited to consider uniformed users that are character-
ized by the same mobility desiderata. However, on mining
pool of users, one should consider maximum detour distance
and time admitted as individual factors of the driver and
each one of the passengers. A further improvement of the
algorithm should contemplate the evaluation of the existing
collaborative groups, in order to prefer users to rely on.
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For any driver, we have selected the pair of mobility traces
that composes its daily route, and we have compared each
one of those with the whole set of concurrent mobility traces
(within a confidence time interval) generated by other users.
All the compared users with a mobility trace detected along
the one generated by the selected driver represent potential
passengers in ride-sharing pools, which can outline new po-
tential collaborative groups of agents. The resulting pools
contain information about the most suitable sequence of
timed-stops to pick-up and drop-off passengers.

Once the pools are detected, ride-sharing recommenda-
tions can be sent out. Their should push social interactions
between the involved users, and let new collaborative com-
munities to be shaped. The system can track how they affect
users mobility behavior and update both their individual
and collaborative profiles.

6. RELATED WORK
Finding new approaches to enable mobility services has

recently received a lot of attention. However, most of the
studies are far from reaching effective and integrated solu-
tions (from the collection of the requests to the provision of
the services).

As discussed in Section 2, most of current ITS approaches
do not offer a unified and integrated approach to support
urban mobility in all its aspect, and often they own inde-
pendent approaches for different mobility needs [1]. Also, in
our proposed framework, and unlike most of ITS proposals,
citizens are active agents of the overall infrastructure, by col-
laborating implicitly and explicitly towards the provisioning
of smart mobility services.

Of particular interest to our work is the role of a middle-
ware, which supports interactions and information exchange
among the agents on the socio-technical system, and its in-
volved in the generation of distributed intelligence. As far as
we know, the best examples in this field that deal with the
underlying infrastructure are the work of Harnie et al. [15],
which aims to specify urban-area applications with tuple
spaces abstraction, and the work of Julien and Roman [18],
which proposes a middleware to enable context-aware mo-
bile applications. The former enables intelligence through
moving buses that carry the tuples, the latter propagates
intelligence through vehicle-to-vehicle short range commu-
nications.

The works of Yang et al. and of Qu et al. [30, 25] in-
troduce the concept of Intelligent Transportation Spaces as
the integration of various ITS modules, vehicles, and road-
side infrastructure. They mainly analyze safe and effective
communication technologies to enable pervasive intelligence
without impacting too much on drivers workload. However,
neither of the works mention social interactions in matching
mobility needs and services.

To the best of our knowledge, existing works do not give
their contributions on proposing new approaches that could
enhance social interactions.

Most of the mobility services presented in literature (e.g.,
[17, 12]) merely offer tailored solutions, without worrying
about the creation of a coordinated methodology that deals
with the dynamic orchestration of heterogeneous data streams.

We believe that a unified framework that models sensing,
computing, and actuating capabilities of a socio-technical
system of mobility agents is currently missing.

7. CONCLUSIONS AND FUTURE WORK
Social interactions among humans and ICT devices could

strengthen the awareness of what urban mobility needs are,
and how they can be addressed with smart mobility services.
Social collective intelligence can be enabled, and so its util-
ity can hit citizens and convince them to collaborate and
cooperate each others through innovative sharing practices
regulated by suitable incentives.

In the future, we will reshape our case study based on ride-
sharing recommendations over a longer collection period, in
order to reduce data ambiguity. Then, we will experiment
with a larger set of mobility services, and will attempt at
integrating them towards the realization of composite mul-
timodal mobility services through our coordination frame-
work.
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Scientific and Statistical Database Management,
volume 6187 of Lecture Notes in Computer Science,
pages 132–150. Springer, 2010.

[20] L. M. Martinez, G. Correia, and J. Viegas. An
agent-based model to assess the impacts of
introducing a shared-taxi system in lisbon (portugal).
In Proceedings of the 7th International Workshop on
Agents in Traffic and Transportation, 2012.

[21] S. Mathur, T. Jin, N. Kasturirangan,
J. Chandrasekaran, W. Xue, M. Gruteser, and
W. Trappe. Parknet: Drive-by sensing of road-side
parking statistics. In Proceedings of the 8th
International Conference on Mobile Systems,

Applications, and Services, MobiSys ’10, pages
123–136. ACM, 2010.

[22] S. Nawaz, C. Efstratiou, and C. Mascolo. Parksense:
A smartphone based sensing system for on-street
parking. In Proceedings of the 19th Annual
International Conference on Mobile Computing &
Networking, MobiCom ’13, pages 75–86, 2013.

[23] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’09, pages 165–178, 2009.

[24] V. Pejovic and M. Musolesi. Anticipatory Mobile
Computing: A Survey of the State of the Art and
Research Challenges, June 2013.

[25] F. Qu, F.-Y. Wang, and L. Yang. Intelligent
transportation spaces: vehicles, traffic,
communications, and beyond. IEEE Communications
Magazine, 48(11):136–142, 2010.

[26] A. S. Rao and M. P. Georgeff. Modeling rational
agents within a BDI-architecture. In J. Allen,
R. Fikes, and E. Sandewall, editors, Proceedings of the
2nd International Conference on Principles of
Knowledge Representation and Reasoning, pages
473–484. Morgan Kaufmann publishers Inc.: San
Mateo, CA, USA, 1991.

[27] P. van Beek and D. W. Manchak. The Design and an
Experimental Analysis of Algorithms for Temporal
Reasoning. Journal of Artificial Intelligence Research,
pages 1–18, 1996.

[28] M. Viroli, M. Casadei, S. Montagna, and
F. Zambonelli. Spatial coordination of pervasive
services through chemical-inspired tuple spaces.
TAAS, 6(2):14, 2011.

[29] X. Yan, H. Zhang, and C. Wu. Research and
development of intelligent transportation systems. In
Distributed Computing and Applications to Business,
Engineering & Science (DCABES), 2012 11th
International Symposium on, pages 321–327. IEEE,
2012.

[30] L. Yang and F.-Y. Wang. Driving into intelligent
spaces with pervasive communications. IEEE
Intelligent Systems, 22(1):12–15, Jan. 2007.

[31] F. Zambonelli, G. Castelli, L. Ferrari, M. Mamei,
A. Rosi, G. D. M. Serugendo, M. Risoldi, A.-E. Tchao,
S. Dobson, G. Stevenson, J. Ye, E. Nardini,
A. Omicini, S. Montagna, M. Viroli, A. Ferscha,
S. Maschek, and B. Wally. Self-aware pervasive service
ecosystems. Procedia CS, 7:197–199, 2011.

[32] F. Zambonelli, G. Castelli, M. Mamei, and A. Rosi.
Programming self-organizing pervasive applications
with sapere. In Intelligent Distributed Computing VII
- Proceedings of the 7th International Symposium on
Intelligent Distributed Computing, volume 511 of
Studies in Computational Intelligence, pages 93–102.
Springer, 2014.

[33] A. X. Zhang, A. Noulas, S. Scellato, and C. Mascolo.
Hoodsquare: Modeling and recommending
neighborhoods in location-based social networks.
CoRR, abs/1308.3657, 2013.

Proceedings of 8th International Workshop on Agents in Traffic and Transportation ATT 2014

71



Negotiating Parking Spaces in Smart Cities

Claudia Di Napoli
Istituto di Calcolo e Reti ad

Alte Prestazioni
C.N.R.

Naples - Italy
claudia.dinapoli@cnr.it

Dario Di Nocera∗

Dipartimento di Matematica
University of Naples

“Federico II”, Napoli - Italy
dario.dinocera@unina.it

Silvia Rossi
Dipartimento di Ingegneria

Elettrica e Tecnologie
dell’Informazione

University of Naples
“Federico II”, Napoli, Italy
silvia.rossi@unina.it

ABSTRACT
Parking in urban areas is becoming a big concern for its
environmental and economic implications. Smart parking
systems are considered essential to improve both city life in
terms of gas emission and air pollution, and motorists life by
making it easier to park. Supporting technologies are emerg-
ing at the industrial level to easily locate available parking
spaces, to automate parking payments, and to collect useful
data on consumer demand. Nevertheless, the full poten-
tiality of smart parking systems is still far to come, and it
represents a big challenge for the future of Smart Cities. In
this paper we propose to address the parking space alloca-
tion as the result of an agreement between parking providers
and parking requestors that accommodates their respective
requirements on some parking attributes. A software agent
negotiation mechanism is adopted to establish such an agree-
ment by taking into account user requirements on a park-
ing space in terms of its location and cost, and the vendor
requirements in terms of income and city regulations to ob-
tain an efficient parking allocation and traffic redirection.
It is shown that agent negotiation allows to allocate park-
ing spaces to users in an automatic and intelligent manner
by taking into account that a compromise among different
preferences of users and vendors have to be met.

Keywords
Agent negotiation, multi-agent systems, smart parking, smart
cities.

1. INTRODUCTION
Urban transportation is considered a relevant investiga-

tion area for the innovation of Smart Cities since it may
contribute to increase the quality of life of city-dwellers, to
enhance the efficiency and competitiveness of the city econ-
omy, and to move towards the sustainability of cities by im-
proving resource efficiency and meeting emission reduction
targets. The main themes addressed in urban transportation
are:

∗Ph.D. scholarship funded by Media Motive S.r.l, POR
Campania FSE 2007-2013.

• Cooperative Intelligent Transport Systems and Ser-
vices (C-ITS), based on the principle that all coop-
erative parties (i.e. ITS stations, vehicles, road side
units) exchange information between each other, so
enabling up-to-date traffic information, improved road
safety and traffic efficiency.

• Enabling Seamless Multi-modality for End Users, based
on the possibility to combine public transport with
other motorized and non-motorized modes as well as
with new concepts of vehicle ownership.

• Smart Organization of Traffic Flows and Logistics that
involves multi-agency interaction, linking individual
mobility with public transport services.

In this framework, one of the problems linked to the above
themes, is parking in urban areas. It is widely recognized
that drivers searching for parking in wide urban areas waste
time and fuel, so increasing traffic congestion and air pol-
lution [11]. Most of the research projects concerning smart
parking systems focus on ways to collect and publish live
parking information to drivers so they can be informed of
available parking spaces near to the destination they require
[9]. Nevertheless, the fragmentation of public and private
parking providers, each one adopting their own technology
to collect occupancy data, makes it difficult to advise mo-
torists of available parking in multiple zones, but, more im-
portantly, to help them in making decisions on where to
park. Hence, smart parking applications should aim at co-
ordinating individual parking solutions, both private and
public, without involving end-users in the fragmentation of
parking owners. Individual parking owners should be made
aware of the benefits of such a global parking provision by
showing them that the coordinated provision of parking so-
lutions still guarantees their individual income and fair com-
petition by better exploiting the parking spaces offered in a
city.

In the present work, we investigate the possibility to use
software agent negotiation to manage the relationship be-
tween parking supply and demand to provide user-oriented
automatic parking services that take into account both driv-
ers preferences, and parking vendors requirements together
with social benefits for the city, such as a reduction of traffic
by limiting parking in city center [13]. We propose to use
software agents to model both a Parking Manager, who is
responsible for coordinating the offers of individual Parking
Owners (both public or private), and motorists who are end
users that search for parking spaces that meet their require-
ments. In particular, an automatic negotiation mechanism
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Figure 1: A Car Parking System.

is proposed to accommodate users and providers needs. Of
course, the length of negotiation could prevent its use in this
setting [5], so it should be adapted to the negotiation trend
that may vary because of the the attributes to be negotiated
upon, and the parking market situation.

2. A MODEL FOR A CITY PARKING SY-
STEM

Car Park Systems refer to a wide spectrum of parking
facilities including devices to automatically locate car parks
and to automate parking space payment.

In the present work, a Car Park System is intended as a
complex application composed of different devices and ser-
vices, that allows users to retrieve information on the avail-
able parking spaces in a city around a specific destination
area. A sketch of such a system is reported in Figure 1. As
shown, a user may submit a request for a parking space to
the Car Park Server through several devices (e.g. Tablet,
Smart-Phone, PDA or PC). The system provides the user
with a city map to select the area he/she would like to park,
and an interface to indicate his/her parking preferences. A
Parking Manager (PM) is responsible for processing the re-
quest. It queries an internal database (Database) to retrieve
information on the available car parks, and it relies on spe-
cific applications to extract car park availability at the mo-
ment the request is processed (e.g. through Car Park Sen-
sors). Also it may invoke additional services (External Web
Services) to collect information on city regulations and/or
events (provided under the responsibility of the City Man-
ager) relevant to find a parking space, or other salient in-
formation, such as an estimation of the time necessary to
arrive to the user destination from a specific car park, that
can be retrieved from external applications as Google Maps
API [10].

In such a framework, each car park is characterized by the

following parameters:

car_park= <park_id, park_GPS_location, ref_price_unit,

park_capacity, sector>

where park_id is the unique identifier of the car park, park_
GPS_location is its GPS location, ref_price_unit is the
default time unit price for a parking space, park_capacity
is the total number of parking spaces of the car park, and
sector represents the geographical location of the car park
with respect to the city center. In fact, in the proposed
application, the city is divided in several rings (referred to
as sectors) that account for the distance between the car
park and the city center, as shown in Figure 2. A sector is
represented by an integer value so calculated:

sector =





0 distance from city < min range

1 +

⌊
log2(

distance from city

min range
)

⌋
otherwise

where min range is the radius of the first area (sector=0),
and distance from city represents the distance between the
car park location and the city center (located in sector=0).

A user request (park_req) is composed of values referred
to the parking space attributes that are relevant for the user
to decide where to park.

park_req(t)= <id_req, dest_GPS_location, start_time,

end_time, reserv_time>

where id_req is the unique identifier of the user request,
dest_location represents the GPS location of the destina-
tion the user wants to reach, the time interval (end_time -
start_time) represents the duration the user wants to park
for, and reserv_time is a flag used to distinguish between
on-demand or advance requests. For the time being, only ad-
vance requests are considered since for on-demand requests
different assumptions on the evaluation of car park occu-
pancy should be considered.

With a static selection, the PM will select car parks con-
sidering only to meet the user requirements in terms of lo-
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Figure 2: Sector distribution for the city of Naples.

cation, and available parking spaces for the required time
interval. If there is no parking space meeting the require-
ments, a static mechanism will end up with no solutions for
the driver request. A dynamic selection of parking spaces
implies the evaluation of criteria that may not be explicitly
expressed by the user, and that can influence the selection
of the parking spaces offered by the PM. Furthermore, users
may adopt private evaluation criteria that are specific to
their profile to evaluate if the received offer is acceptable or
not. With a dynamic selection, parking solutions that were
not found with a static selection, could be produced as an
acceptable compromise between PM and UA preferences.

3. NEGOTIATING OVER PARKING SPACE
ATTRIBUTES

In a smart parking application, motorists will be clas-
sified according to their different requirements on parking
spaces corresponding to different user’s profile (e.g. busi-
ness, tourist, generic). In fact, users may have different
preferences on the parking attributes, and their relative im-
portance (measured in terms of weights). Furthermore, addi-
tional information may be used (that could come from other
sources of information) to help refining the selection process,
e.g., unavailability of public transportation at the required
time, the necessity to reach different locations once the car
has been parked, the possibility to find other attractions in
the area, and so on.

In this work, we investigate the possibility to use software
agent negotiation to provide a user-oriented automatic park-
ing service that takes into account both drivers preferences,
and parking vendors requirements together with social ben-
efits for the city. In particular, we propose a negotiation
mechanism between two agents: the PM and a User Agent
(UA). The PM has the aim to improve the citizen life, and
city pollution by decreasing the influx of cars in the city cen-
ter, and, at the same time, to offer a better distribution of
vehicles in the managed car parks, still trying to obtain an
economic income. The UA has the aim to help a motorist
to select one of the parking solutions proposed by PM. Of
course, it is difficult for the negotiating agent to evaluate
whether to accept an offer to minimize the expected cost of

communication (at the risk of getting a sub-optimal result
for the specific application), or to keep on negotiating to
maximize its expected utility (at the risk of increasing the
cost of negotiation and ending with a conflict deal). Usu-
ally this lead to the specification of an acceptance condition
that is not only based on utility, but on more complex cri-
teria (i.e., based on utility and time) [2].

The adopted negotiation model is based on the one pro-
posed in [6] that was shown to be a viable approach to ad-
dress the problem of service selection for Service Based Ap-
plications characterized by Quality of Services values that
once aggregated should meet user’s preferences. The pro-
posed mechanism allows to implement a flexible negotiation
in terms of its length. In fact, the negotiation proceeds in
rounds, and the number of round is not statically set, but its
value may be changed by the PM or by the UA according to
the trend of the negotiation process. A concession strategy
is used at each negotiation round by the PM to make offers,
and both negotiators may decide to end negotiation accord-
ing to the negotiation evolution, so the negotiation deadline
(i.e. the number of allowed rounds) is not fixed a priori.

3.1 A one-sided negotiation model
Usually negotiation takes place between two agents x and

y willing to come to an agreement on conflicting interests,
by exchanging an alternate succession of offers and coun-
teroffers in a bilateral interaction [8].

In the present work we adopt the negotiation mechanism
reported in [6], whose protocol is based on the Iterated Con-
tract Net Protocol, that is frequently used to mime the hu-
man contract negotiation process [4]. Contract net protocol
is a market-like mechanism allowing involved parties to ex-
change information in a distributed system, such as a multi-
agent one.

As described in Figure 3, the protocol is organized in ne-
gotiation rounds, each one consisting of interactions between
the UA, that is the initiator of the negotiation, and the PM,
that is the agent proposing offers. Negotiation rounds may
be iterated for a variable number of times until a deadline is
reached or the negotiation is successful. Moreover, both the
UA and the PM can stop the negotiation process. At each
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Figure 3: The iterated negotiation protocol.

negotiation round, the UA issues a request for a parking
space (cfp) specifying its preferred values for the parking
attributes; the PM can either reject the call (Reject cfp),
if there are not offers available, or it sends back a parking
solution (Proposal) selected from a set of available offers it
calculated according to the preferences specified in the cfp

and its own preference criteria. In the latter case, the UA
evaluates the received offer, according to its own evaluation
criteria, to decide whether to accept (Accept proposal) or
to reject it (Reject proposal). If the offer is accepted the
negotiation ends with an Inform message assigning the se-
lected car space to the UA, otherwise a new round starts
with the UA sending again the same cfp request. It should
be noted that an offer proposed by the PM in a negotiation
round is not considered available in future rounds once it
is rejected. This assumption models the possibility that a
rejected parking space may be offered to another user in the
meantime, or its price may change according to the parking
market trends.

Both PM and UA preferences over the attributes to be ne-
gotiated upon, are modeled through utility functions based
on the Multi-Attribute Utility Theory defined on indepen-
dent issues [3]. The function domain represents the negotia-
tion space, and it is normalized to the interval [0, 1]. So, the
utility function of an agent x for an offer oy sent by the agent
y (with x = y or x 6= y) is Ux(oy) : D1 × · · · ×Dr → [0, 1],
where D1, . . . , Dr are the value domains of the r negotiation
issues. The utility function allows to evaluate the value of

each specific offer in terms of agent utility with respect to
that offer.

In our model, the utility function of the PM depends on
the car park availability at the moment the request is re-
ceived, and on the distance of the car park from the city
center, while the utility function of the UA depends on the
parking space price, and on its distance from the requested
destination. Different weights of the different issues may
model different classes of UAs and PMs. In this way, the is-
sues considered in the PM utility function take into account
the preference of the PM to propose first car parks that are
both less occupied and not located in the city center (to re-
duce the influx of cars in city centers). The issues considered
in the UA utility function take into account the preference of
the UA concerning the parking space price, and its location
with respect to the preferred final destination. Utility func-
tions are modeled as linear functions (as it will be explained
in the following sections) resulting from the weighted sum
of the considered issues.

The negotiation occurring between the PM and the UA
is defined as a one-sided negotiation since it allows only the
PM to formulate offers, according its own utility function,
and the UA only to evaluate them, according its own utility
function as well. The rationale of this choice is to model
the assumption that UAs do not have complete information
on parking spaces availability, otherwise they would simply
choose the offer more convenient for them without reaching
a compromise also with the preferences of the PM. So, at
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each round the PM sends only one offer (or equivalently a
finite set of offers) selected according to a strategy allowing
to take into account the requirements of both negotiators.

3.2 Parking Manager Behavior
At the first round of negotiation, the PM computes the

set of possible offers corresponding to a set of car parks that
meet the following requirements:

• the distance (referred to as park_GPS_distance) of the
car park location (park_GPS_location) from the desti-
nation (dest_GPS_location) set by the user, is within
a given distance (location_tolerance);

• the car park have spaces available for the time interval
specified by the user at the time t the request is issued
(end_time - start_time).

The location_tolerance is set by the PM in such a way
to include also car parks that are not in the city center, and
consequently they may be far from the dest_GPS_location

specified by the user, since the PM tries to prevent users
from parking in the city center and to maximize the occu-
pancy of car parks.

An offer of the PM for a parking space of a selected car
park is:

offer(k) = < park_id, park_GPS_distance,

dest_time_distance, park_price_unit >

where park_id is the identifier of the selected car park,
park_GPS_distance is the distance between park_GPS_lo-

cation and dest_GPS_location, dest_time_distance is the
time necessary to travel from park_GPS_location to the
dest_GPS_location using public transportation, and park_

price_unit is the unit price offered for the selected park-
ing space. The dest_time_distance value is obtained by
invoking external services, such as Google Maps, but also
also other city services giving additional information such
as events preventing the use of public transport at the time
of the request.

In order to incentivize users to park outside the city cen-
ter and in car parks with more parking spaces available, the
park unit price for a parking space is dynamically computed
by considering that car parks located in the city center are
more expensive (according to the ring distribution reported
in Figure 1), and that car parks are offered with a discount
factor that depends on the car park occupancy. Hence, the
park_price_unit for a selected car park is computed as fol-
lows:

park_price_unit = max_price

(
1− sector

max_sector + 1

)
+

− park_availability

park_capacity
· ud

where max_price is the maximum time unit price for the
city center car parks, max_sector is the maximum number
of sectors in the city, park_availability is the number of
parking spaces available for the time interval requested by
the UA (end_time - start_time), park_capacity is the to-
tal number of parking spaces, and ud is the maximum dis-
count for the PM on the car parks (with ud � max_price).
In this way, the price offered by the PM is not the static de-
fault price associated to the car park (i.e. ref_unit_price),

but a dynamic value. The park_availability value is re-
trieved through a specific service invoked by the PM at the
time the request is processed.

Once the PM computes the set of possible offers, it needs
to establish which one to offer at each negotiation round, i.e.
it needs to establish its concession strategy during negotia-
tion. In order to do so, the PM uses a private utility function
to rank the selected car parks. The evaluation function used
by the PM to compute the utility of an offer (offerPM (k))
is the following:

UPM (offerPM (k)) =

n∑

i=1

(αi ∗ qi,k −minj(qi,j)

maxj(qi,j)−minj(qi,j)
)

where n is the number of issues the agent is evaluating, qi,k is
the value of the i-th issue of the k-th car park, and minj(qi,j)
and maxj(qi,j) are respectively the minimum and the maxi-
mum values of the i-th issue among all the car parks selected
by the PM. The constants αi are weights associated to dif-
ferent issues with the constraint that:

n∑

i=1

αi = 1

The issues for the PM are the distance of the car park from
the city center, and the availability of parking spaces in the
car park for the requested time interval, i.e.:

• q1 = dist(park_GPS_location, center_GPS_location)

• q2 = park_availability

Through its utility function, the PM ranks the offers for
the selected car parks in a utility descending order (total or
partial). At each negotiation round, it sends the UA one
offer according this order, so adopting a concession strategy
with a monotonically decreasing value of utility.

3.3 User Agent Behavior
The UA evaluates the offer it receives at each round to

decide whether to accept or to reject it. In order to do so,
it calculates its utility value for that specific offer, using the
following utility function:

UUA(offerPM (k)) = 1−
m∑

i=1

βi ∗ qi,k − ci
hi − ci

where m is the number of issues the agent is evaluating, qi,k
the value i-th issue of the k-th offer, ci is the preferred value
over the i-th issue, and hi is a constant value introduced for
normalizing each term of the formula into the set [0,1]. The
constants βi are weights associates to different issues with
the constraint that:

n∑

i=1

βi = 1

If qi,k − ci < 0 than the term
m∑
i=1

βi ∗ qi,k−ci
hi−ci

is set to zero.

Moreover, we assume that the preferred ci values are not
unreasonable with respect to each considered issue (i.e. user
cannot ask for a parking space in a city center for free!).

The issues considered by the UA are the offered price, the
distance of the offered car park from the requested location,
and the travel time distance to the offered car park from the
requested location with public transportation:
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(a) Parking Manager utilities. (b) User Agent utilities.

Figure 4: Parking Manager and User Agent Utilities.

• q1 = park_price_unit

• q2 = park_GPS_distance

• q3 = park_time_distance

The UA accepts the offer if the utility value for that offer
is greater then a predefined threshold value. This threshold
may be set to different values to model different UA profiles.

4. A FIRST EXPERIMENTATION ON A
REAL SETTING

A preliminary set of experiments was carried out to de-
termine whether negotiation is a viable approach in order to
meet both users and parking managers requirements.

In this experimentation the weights in the utility functions
are equally distributed among issues (i.e., αi = 0, 5 and
βi = 0, 33 for all i), while for each issue i, hi and ci are
dynamically set to respectively maxj(qi,j) and meanj(qi,j)
(i.e., the maximum and the mean value for the current issue).
The UA accepts an offer if its utility for that offer is greater
than a threshold value set to 0.6 for all the experiments.

4.1 Utility Evaluation in a Running Example
A running example of a real negotiation, where we eval-

uate the utility obtained by the PM and the UA when an
agreement is achieved, is reported.

The experiment starts with a request issued by a hy-
pothetical user specifying the destination he/she wants to
reach, selected on interactive city map provided by a spe-
cific service, and the time interval he/she wants to park for.
As described in Section 2, the UA sends a park_req (i.e.,
a call for parking) to the PM. A graphical representation
of the use case described above is reported in the Figure 4,
where the destination selected by the user is identified with
the down arrow.

At the first round, the PM selects a list of car parks
around the user’s destination (as shown in Figure 4(a)), and
it calculates the ranking of the selected car parks based
on its utility according to the function reported in Sec-
tion 3.2. The PM found ten car parks with parking spaces

available in the requested area within a predefined loca-

tion_tolerance. Parking identifiers and locations are ex-
tracted from the OpenStreetMap database [7] of the city of
Naples (Italy), while routing information (dest_GPS_distan-
ce and dest_time_ distance) are evaluated through the use
of Google MAPs API [12]. The occupancy of car parks is
randomly generated for each negotiation run. In the Figure
4(a), the selected car parks are reported with labels speci-
fying the corresponding park ids and their utility values, as
evaluated by the PM.

At each negotiation round, the PM offers to the UA the
parking space with the highest utility value (in this example
it offer a car park with utility equals to 0.82). The UA ac-
cepts (rejects) the offer if its utility for that offer, evaluated
according to the formula described in Section 3.3, is higher
(lower) than the threshold value. The first PM offer corre-
sponds to an utility for the UA equals to 0.33. Hence, the
offer is rejected because it is lower than the threshold value
(equals to 0.6), and the UA starts another round of negoti-
ation. The negotiation ends at the fourth round, when the
UA accepts an offer with utility equals to 0.66 (correspond-
ing to an utility for the PM equals to 0.37). In the Figure
4(b), car parks offered by the PM during negotiation are
reported with labels specifying the corresponding park ids
and their utility values, as evaluated by the UA.

In Table 1 we summarized all the relevant information
at each negotiation round, reporting the number of parking
spaces available in a car park (# Spaces), its distance from
the city center (Distance), the unit price (Price) to be paid
for the parking space, and the distance of the car park from
the destination set by the UA, calculated both in length
and in time (Route and Time), as obtained by querying a
service of Google Maps. This information is necessary to
allow the PM and the UA to calculate their utility values
for the car parks, according to the utility functions reported
respectively in 3.2 and 3.3. In this specific run, the negotia-
tion ends after four rounds with an utility of the PM equals
to 0.37 and for the UA equals to 0.66. Note that while the
utility of the PM is not particularly high (because of the
few parking spaces available in the car parks), the PM still
manages to allocate a parking space in only four rounds of
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# Rounds ID # Spaces Distance (m) Price (e) Route (m) Time (s) PM Utility UA Utility

1◦ 417856728 109 3187 7.99 1516 1384 0.82 0.34
2◦ 2204657189 41 4036 5.61 1818 2183 0.63 0.16
3◦ 2204657190 41 3594 7.98 1192 871 0.54 0.55
4◦ 2204658556 18 3359 7.46 891 646 0.37 0.66

Table 1: Negotiation on a single query.

negotiation, being able to reach a compromise by offering
a car park that is not the closest to the user’s destination,
but still acceptable by the user in terms of time necessary to
reach the destination from the car park location, and that
is not too close to the city center.

4.2 1 vs N Rounds of Negotiation
Another experimentation was carried out on a simulation

of 150 different queries made by users. The destinations
selected by the user are located in sectors two and three
on the city map. For each query a negotiation run takes
place. The experimental results are summarized in Table 2
for successful negotiations. In particular, the table reports,
for each negotiation run, the minimum, the maximum and
the mean value (with the standard deviation) of the number
of selected car parks (# Available car parks), the number of
negotiation rounds (# Rounds), the PM and the UA utility.

The mean value of rounds (that is the mean number of
offers sent by the PM) is much lower that the mean number
of car parks selected by PM for the experiments (3.3 rounds
with respect to 11 available car parks). This means that the
negotiation ends before the PM offers all the selected car
parks.

The obtained mean utilities values for the UA and PM
are reported in rows 3 and 4 of Table 2, showing that a
compromise on the requirements of both parties is reached.
In fact, without negotiation (i.e., in the case the complete
set of offers selected by the PM is known to the UA as well),
the UA would select the offer that maximizes its own utility.
The PM and the UA mean value utilities without negotiation
are reported in the last two rows of Table 2. As expected, in
this way, the UA requirements are privileged (UA achieves
a mean utility value equals to 0.71) with respect to the PM
ones (PM achieves a mean utility value equals to 0.35).

5. DISCUSSION AND CONCLUSIONS
Parking in populated urban areas is becoming a challeng-

ing problem requiring smart technologies in order to assist
users in finding parking solutions, and to shorten the time
necessary to find parking spaces. In this way, it is possible
to decrease traffic congestion, and to improve the everyday
life of city dwellers.

In the present work, we investigated the possibility to use
software agent negotiation to address the parking problem
by taking into account not only motorists’ preferences re-
garding parking locations, but also parking vendors prefer-
ences regarding car park occupancy, and social city benefits
(e.g. less traffic congestion in city centers). Multi-agent
negotiation was already used in Intelligent Transportation
System applications, such as [1, 4]. In particular, in [1] co-
operative agent negotiation is used to optimize traffic man-
agement relying on shared knowledge between drivers and
network operators about routing preferences. In [4] agent

negotiation is used for dynamic parking allocation, focusing
on satisfying driver’s preferences on prices and distances.

Here we use a flexible negotiation mechanism to find park-
ing solutions that represent a compromise among different
needs: a user who prefers to park close to the city center,
the car park vendors who prefer to sell parking spaces in less
occupied car parks, and a city manager who tries to limit
the circulation of cars in city centers. At this purpose, a Car
Park System is proposed in order to provide a coordinated
selling of parking spaces belonging to different car parks,
managed by a single software entity, the Parking Manager
agent. We show that an automated negotiation mechanism
between the Parking Manager and motorists represented by
User Agents, allows to find a compromise solution for the in-
volved negotiators, through the use of utility functions that
model different needs that have to be dynamically evalu-
ated, so helping users in their decision making process. The
automated negotiation mechanism allows to formulate offers
that do not strictly meet the user requirements, and to find
parking solutions that are a result of a negotiation process
between the PM and the UA upon parking attributes that
are evaluated differently by the negotiators.

In principle, the proposed framework allows also to model
different user’s profiles since the evaluation of the parking
space attribute values may vary for different classes of users.
Furthermore, different UAs and different PMs may adopt
different evaluation criteria respectively to reject/accept and
to select offers that can be based on dynamic parameters,
e.g. as the occupancy of the car park at the requested
time, or the unavailability of public transportation at the
requested time.

Finally, we showed that negotiation is a viable and promis-
ing approach since a solution that is found before all selected
car parks are proposed to users, i.e. before they reach com-
plete information on the parking spaces available offers, and
that does not privilege only the drivers’ preferences.

In order to better assess the usability of negotiation in
real parking settings, a further experimentation is planned
to evaluate the length of the negotiation process when the
number of car parks increases and their occupancy distribu-
tion varies because of multiple users’ requests. Also, more
experimental settings have to be designed with different val-
ues of the UA threshold, modeling the user’s “attitude” to
reach an agreement, to evaluate their impact on the negoti-
ation length.
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max value min value mean value

# Available car parks 14 10 11± 2
# Rounds 9 1 3.3± 2.5

PM Utility 0.97 0.03 0.62± 0.22
UA Utility 0.75 0.10 0.68± 0.06

PM Utility 1 Round Neg 0.35± 0.27
UA Utility 1 Round Neg 0.71± 0.04

Table 2: Experimental Data collected in 150 runs.
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ABSTRACT
Many public transport operators are faced with high peak de-
mands. Often this leads to crowded vehicles and discomfort
for the passengers. The increasing use of information tech-
nologies creates new opportunities for passengers to avoid
crowding. However, the role of crowding in the dynamics
of a public transport system is not well understood. With
the definition and implementation of a model based on the
minority games, a class of games that deals with crowding
dynamics, we aim to provide public transport operators with
insights to deal with crowded situations.

We propose an extension of a minority game where multiple
resources and heterogeneous agent preferences are included.
We have conducted two simulation studies, aimed at inves-
tigating the dynamics of crowding within public transport.
In our first experiment we investigate the effect of the avail-
ability of information on crowding. In a second experiment
we study the dynamic optimization of capacities according
to a rolling stock circulation model. We find that both the
availability of information disclosed and the chosen capacity
optimization mechanism have an impact on the number of
agents utilizing resources and their payoffs. As such, these
models will allow us to develop new operator policies to deal
with crowded situations in the future.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Miscellaneous—
Coherence and coordination

General Terms
Experimentation, Management, Performance

Keywords
capacity, coordination, information, minority games, public
transport, resource allocation

1. INTRODUCTION
Operators in public transport are often faced with peak

demands, typically during the morning and afternoon rush
hours. As a result, vehicles can become very crowded, greatly
reducing the comfort experienced by the passengers. As in-
formation technologies enable passengers to have more direct
communications with the public transport operators and
have more freedom to work at different locations, passengers
are gaining more opportunities to avoid crowded situations.
However, the impact of crowding on passenger behavior and
the interaction between railway operations and passengers is
not well understood. In this paper we develop a model, based
on the concept of minority games, that allows us to study the
dynamics of crowding in public transport through computa-
tional experiments and evaluate the impact of operational
and behavioral models on a number of performance measures,
most importantly the utilization of available capacities.

Since the “El-Farol Bar Game” [1] was first introduced in
1994, the concept of the minority game has received a lot of
attention from researchers. One of the great strengths of this
model lies in the simplicity of its description: a population
of agents have to decide every Thursday night whether to go
to the bar or not. Once they go the bar, they have a positive
payoff if less than 60% of the population goes to the bar,
while they have a negative payoff if it is too crowded. As
everyone makes this choice every Thursday, the El-Farol Bar
Game has an iterative nature. While historic information
is provided, the interesting aspect comes from the fact that
there is no direct coordination between the agents.

Issues related to limited availability of resources and a lack
of explicit coordination occur in many real world systems.
The applications of these models include car traffic [2], con-
gestion in computer networks [8] and financial markets [4].
While these types of applications were considered earlier from
a game theory perspective, most notably under the name of
congestion games [11], the novelty from the “El-Farol Bar”
study was the application of a complex systems approach
enabled by simulation of a repeated game, while game theory
is mostly concerned with the properties of equilibria.

In this paper, we focus on minority games where the op-
erator cannot control agent behavior, but has control over
the disclosure of information and the system capacities. The
main application domain is public transport systems, where
passengers share vehicles depending on their chosen route
and time of travel. If a connection is operated frequently,
passengers with some flexibility in their schedule can try to
avoid crowded situations by shifting time of travel. Since
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it is reasonable that a passenger does not want to travel at
any time, we introduce the concept of individual choice sets
representing the acceptable choices. To our best knowledge,
this type of heterogeneity of the choice sets has not been
studied in the context of minority games before.

Within public transport systems, there are many oppor-
tunities to provide passengers with additional information:
many stations and vehicles have screens with travel infor-
mation, and many passengers use smart phones to receive
information during their journeys. The increasing adoption
of smart card ticketing systems allows operators to have
accurate data on the utilization of each vehicle. As oper-
ators in railway and metro systems can extend or shorten
the trains [5] and bus operators can employ different vehicle
sizes, adaptive capacity allocation is becoming a possibility.

The main observation in the original “El-Farol Bar Game”
simulations [1] is that even though individual agents keep
switching their preferred predictive model, the aggregate
utilization of the bar converges to the efficient level. In
order to explain this phenomenon the minority game was
introduced, where the utilization history was replaced with
a history of binary values indicating whether the bar was
overcrowded or not. The main idea of this approach is
that the set of all possible deterministic strategies can be
characterized so that methods from statistical mechanics can
be applied [3].

The remainder of this paper is organized as follows: in
Section 2 we introduce our class of minority games. In
Section 3 we discuss the architecture of our simulation and
agents. This simulation framework is then applied in order
to investigate the effect of different information policies in
Section 4. In a second simulation study we evaluated the
effect of rolling stock optimization in the context of public
transport (Section 5). In Section 6 we show that the inclusion
of individual choice sets and scoring functions leads to NP-
hardness of maximizing the efficiency of a given system. We
discuss our findings and plans for future research in Section 7.

Related Work
A variation of the minority games are the resource allocation
games, introduced by [7]. This extension of minority games
introduces multiple resources and capacities that vary over
time. Conditions are given under which the agents can use
a social network structure in order to adapt efficiently to
variations of the capacities. The fluctuations of the capac-
ities considered in the studies associated with the resource
allocation games only depend on time and do not depend
on the distribution of agents over the resources during the
game.

While the body of knowledge on learning techniques for
agents in minority games [10] is very useful for the engineer-
ing and design of artificial agents, it is a question whether
it is applicable within systems where real humans are in-
volved. Selten et al. [13] conducted a laboratory experiment
involving route-choice. The participants could be divided
into three groups: participants who had the tendency to
switch away from a road if it was congested during the pre-
vious round, participants who had the tendency to stay on
their current road regardless of it being congested during
the previous round, and participants who were harder to
classify. Although the participants showed different types of
behavior, the distribution of the participants over the roads
approached the equilibrium very closely.

2. A MODEL FOR CROWDING DYNAMICS
The general scheme of model is that in each round every

agent decides whether he will use one or more resources or
refrains from doing so. Using a resource gives the possibility
to gain a positive payoff or a negative payoff depending on
the utilizations encoutered. If he does not use any resource,
the payoff will be neutral, i.e. zero.

We define symbols for the resources, the agents and payoffs.
The resources will be defined in the following way:

• A set R := {1, 2, . . . ,m} of m resources.

• A soft capacity function cap : R→ Z+.

Thus there are m resources, each of which having an
associated capacity. Note that we define soft capacities: they
can be violated, but everyone in such a situation should
have a negative payoff. Based on the capacity we define the
utilization of a resource as the fraction of its capacity that
is occupied. The typical example in public transport is the
number of passengers divided by the number of seats. As
the game is played iteratively, the transport operator can
adapt the capacities based on observations recorded during
earlier rounds of the game. We also define the preferences
and payoffs of the agents that play the game:

• A set N = {1, 2, . . . , n} of n agents.

• A non-empty collection Ci of subsets of R.

• A scoring function si : Qm × Ci → R for each agent
i ∈ N

During each round, every agent should choose one of the
options in its choice set. We assume that every choice set
contains the empty set as a neutral option, but this is not
strictly necessary. We can describe the outcome of a round
based on the choices made by all agents. If an agent i chooses
to use a set of resources c ∈ Ci, we set the indicator variable
xic to 1. The set of all vectors of xic’s describing a valid
outcome is thus defined by

O = {x | ∀i ∈ N :
∑

c∈Ci

xic = 1, xic ∈ {0, 1}}. (1)

Given the outcome vector x for a round, we can calculate
the utilization of the resources. We define a vector u(x) ∈ Qm

that contains an entry for each resource. The entry ur(x) for
resource r ∈ R is calculated as follows:

ur(x) =

∑

i∈N

∑

c∈Ci:r∈c

xic

cap(r)
. (2)

While in principle si can be a general scoring function, for
ease of analysis we will use the restricted class of threshold
based scoring functions. These scoring functions have a payoff
of −1, 1 or 0 depending on a individual threshold θi and
the maximum encountered utilization. The scoring function
itself is then defined as follows:

si(u, c) =





0 if c = ∅,
1 if max

r∈c
ur ≤ θi,

−1 otherwise.

(3)
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Performance Measures
Since we want to analyze the behavior of an agent population,
we will introduce some measures that are of analytic interest
and can be recorded during a simulation. We define the #
symbol to denote the cardinality of a set (e.g. #{6, 9} = 2).
Given an outcome x ∈ O during any of the rounds of the
game, we can calculate the following observations:

• utl(x) = 1
n

#{i ∈ N : xic = 1, c 6= ∅}, i.e. the fraction
of agents utilizing a resource.

• pos(x) = 1
n

#{i ∈ N : xic = 1, si(y, c) > 0, y = u(x)},
i.e. the fraction of agents with a positive payoff.

• posc(x) = pos(x)
utl(x)

is the fraction of agents with a positive

payoff among the agents who utilize a resource.

• avg(x) = 1
n

∑

i∈N

∑

c∈Ci

si(u(x), c)xic is the average payoff

of the agents.

3. ARCHITECTURE OF THE AGENTS AND
SIMULATION

Given an instance of the game, a simulation still depends
on two more aspects: the way the agents make their decisions
and to which extent the agents can observe the outcome of
the previous rounds. As we want to be able to evaluate
the effect of different types of agent behavior, we will allow
different types of agents in the population. We will introduce
a number of types in Section 3.1. We first define the main
steps that will be executed in each round of the simulation:

1. Let every agent i ∈ N choose one option c ∈ Ci from
its choice set according to its agent type.

2. Calculate the outcome vector x and corresponding uti-
lization vector u(x) accordingly.

3. Let every agent i ∈ N observe, learn and process its
score si(u(x), c) based on its agent type.

4. The operators lets every agent i ∈ N observe, learn and
process information based on the active information
policy and the utilization vector u.

From these steps we can see the necessary ingredients for
an agent implementation within this simulation scheme: an
agent needs a choice function and can optionally implement
a method to process incoming scores and information.

3.1 Agent Types
The most simple agent type is the random agent, who

selects a choice from its choice set uniformly at random in
each round. This agent type is useful for both benchmarking
purposes, validating the simulation architecture analytically,
and to model noisy behavior within the population.

The more complicated agent types will make decision based
on observations during earlier rounds of the game. For these
agent types, step 4 of the simulation process in a round can
have an effect on step 1 in the next round. The number of
rounds the agents look back is referred to as the memory
length. An important finding in the minority game model
is that the most efficient utilization is reached when the
memory length of the agents is proportional to the logarithm
of the total number of agents [12].

The second type of agent, the average payoff agent, applies
a simple reinforcement learning heuristic. Reinforcement
learning strategies have received notable attention in the
literature, and we take one of the most simple ones as an
example. As such, our average payoff agents perform ex-
ploration during 10% of the rounds by making a random
choice, while they exploit the observed average payoff values
during 90% of the rounds. In case multiple choices have the
best average payoff, the tie is broken by picking one option
uniformly at random.

A variation of average payoff agent is the average utilization
agent, who uses the same reinforcement learning heuristic
to learn the average utilization of the resources. The main
difference is that this agent uses the information received to
learn the average utilization and pick the choice with the
lowest average utilization, or the neutral option if this choice
has still higher average utilization than its threshold.

The last type of agent, the predictive agent, aims to predict
future utilizations in order to find the best choice. If the
agent can predict future utilizations, the agent can generate
a fictitious utilization vector and evaluate the expected score
of each choice. This agent type is similar to the one studied
in original El Farol Bar paper [1]. In a round with index t,
the agent checks which of its personal heuristics was most
accurate in round t−1 and uses this one to predict utilizations
in round t. As our model introduces the concept of multiple
resources, there can be situations where an agent does not
know all historic utilizations of each resource. We calculate
the accuracy of each heuristic based only on the information
that is available. As availability of utilization information
is defined on the agent level, an agent can compare the
heuristics using the same data set.

We implemented the following predictive heuristics: repli-
cate the oldest utilization in memory, take the average of the
utilizations in memory or fit a linear regressive model on the
utilizations in memory.

3.2 Information Policies
At the end of each simulation round, we let each agent

process information and observations on the utilization of
the resources. We define a unit of information as a 3-tuple
(t, r, u) consisting of the round of the game t, a resource r
and a utilization vector u. As the agent can have multiple
resources in its choice set, it should be able to receive and
process multiple pieces of information each round. In general,
an information policy is a set of rules that determine the
information offered to each agent in each round. While there
are very many information policies possible, we propose four
basic ones.

In public transport, the fact that an agent is using a
resource allows it to observe the utilization. Thus in our
most basic information policy, private information, an agent
receives exact information for the resources in its choice.

On top of private information, the entity or agent control-
ling the resources could monitor the utilizations and try to
attract more agents in case a resource r has a low utiliza-
tion, say less than 40% of its capacity. In such a situation
the information policy can state that additional information
regarding resource r should be provided to all agents. We
will refer to this type of policy as adaptive information.

In some situations there are information systems that
provide information on the crowding of a resource. A real life
example one can think of is a smart phone application of a

Proceedings of 8th International Workshop on Agents in Traffic and Transportation ATT 2014

82



Table 1: Results of the simulation study where different information policies are evaluated. The minimum, average and
maximum utl (fraction of agents utilizing a resource) and posc (fraction of agents who have a positive payoff among those that
utilize a resource) values measured for each of the 66 population mixtures are reported.

utl (n = 50) private adaptive estimate full
Minimum 0.63 0.75 0.75 0.75
Average 0.77 0.90 0.91 0.91
Maximum 0.91 0.97 0.99 0.99

posc(n = 50) private adaptive estimate full
Minimum 0.90 0.90 0.89 0.87
Average 0.95 0.93 0.91 0.90
Maximum 0.99 0.97 0.93 0.92

utl (n = 100) private adaptive estimate full
Minimum 0.45 0.66 0.70 0.73
Average 0.60 0.70 0.73 0.77
Maximum 0.75 0.75 0.82 0.85

posc (n = 100) private adaptive estimate full
Minimum 0.46 0.46 0.41 0.30
Average 0.77 0.65 0.60 0.48
Maximum 0.98 0.84 0.72 0.54

utl (n = 200) private adaptive estimate full
Minimum 0.20 0.40 0.46 0.51
Average 0.42 0.48 0.52 0.56
Maximum 0.75 0.75 0.75 0.78

posc (n = 200) private adaptive estimate full
Minimum 0.02 0.02 0.02 0.02
Average 0.49 0.35 0.27 0.19
Maximum 0.94 0.68 0.42 0.26

public transport operator, that shows one, two or three icons
based on the forecasted crowdedness of a vehicle, reducing the
utilization level provided to the agent to a few discrete values.
This idea is capture by the estimate information policy, where
the utilization of each resource is rounded up to either 0,
1
4
, 2
4
, and so on, similar to the 3 symbol crowding indicators

provided by some operators. This rounded utilization is then
provided to all agents. We should take care that we send the
rounded utilizations in case the agent did not observe the
utilization by itself, and use exact utilization otherwise.

In the final template, we send out exact information on
every resource to every agent in each round – thus in this
situation the agents have full information.

4. EVALUATING INFORMATION POLICIES
In our first experiment, we evaluate the four information

policies in a population of agents that use public transport
to travel from a single origin to a single destination, but
can choose for different times of travel. As such their choice
sets contain only singleton resources, reflecting the depar-
ture times a public transport service is scheduled and the
empty set as a neutral option, reflecting a journey by car
or staying at home. We find that increasing the available
information leads to a greater number of agents utilizing the
public transport system, but at the cost of the average payoff.
However, the magnitude of this effect is influenced by the
ratio of population size and available capacity.

4.1 Experimental Setup
In our experiments, we work with m = 10 resources rep-

resenting the departure times. Every choice set Ci contains
∅ and 3 different singleton sets picked uniformly at random
from R without replacement. For each agent i we use a
threshold based scoring function with θi ∈ { 5

10
, 6
10
, . . . , 1}

picked uniformly. The capacity of each resource is fixed to
10, i.e. cap(r) = 10.

As we have 100 units of capacity available each round,
we consider a high capacity scenario with n = 50 agents,
a regular scenario with n = 100 agents and a low capacity
scenario with n = 200 agents. For each of these scenarios,
we vary the population by picking all pairs p, q ∈ 0, 1, . . . , 10
such that p+ q ≤ 10. Our population then consists of 10p
random agents, 10q average utilization agents and 10(10−
p− q) predictive agents. In total 66 population mixtures are

evaluated. For each mixture of agent implementations we
regenerate the choice sets and thresholds 100 times. For a
given instance of the choice sets we run the experiment 25
times, regenerating the predictive agents 5 times if they are
part of the population. Thus, in total we run 2500 simulations
per combination of population mixture and population size.
As we want to ignore the warm-up period of the simulation
and like to interpret the rounds as days, the measures are
recorded from round 10 to 40 during each simulation run.

The predictive agents each have an individual randomly
selected set of 3 random predictive heuristics from the fol-
lowing list: average heuristic with memory lengths of either
4, 5, 6 or unlimited, linear regression with memory lengths
of 4, 5, 6 or unlimited, replicate the oldest observation with
memory length either 1, 2 or 3.

4.2 Results and Discussion
The results of our simulation experiments are presented

in Table 1. If we look at the left column of Table 1, we
can verify that when we increase the level of information
provided to the agents, the number of agents utilizing a
resource increases. If we look at the average values from
private to adaptive, we can see that the 0.13 increase for
n = 50 scenario is greater than the 0.06 increase for n = 200.
These numbers suggest that the effect of information depends
on the units of capacity available per agent in the population.

If we look at the fraction of agents utilizing a resource
with a positive payoff (this can be interpreted as customer
satisfaction) in the right column of Table 1, we can see that
increasing the level of information decreases the posc value.
This seems intuitive, since adding information attracts more
agents, and having more agents increases the likelyhood
of crowding. Again, the amount to which the posc value
decreases when we move from the private to the adaptive
case is impacted by the amount of capacity available per
agent: for n = 50 the decrease of 0.02 is less dramatic than
the 0.14 decrease of in the n = 200 case.

For future work we will investigate whether better infor-
mation policies can be designed. The are also questions
regarding the effect of noise in communications, such as tech-
nical problems at the side of the operator or agents ignoring
information sometimes. We are curious to learn whether
such noise could lead to less correlated agent behavior and
whether this can lead to better system efficiency.
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Figure 1: The network of trips along a line during the 16
time slots with the possible movements of rolling stock units
outside the regular trips represented by dashed lines.

5. CAPACITY OPTIMIZATION IN PUBLIC
TRANSPORT

In our second experiment, we want to evaluate the effect
of rescheduling capacities on the crowding dynamics in the
system. Consider a public transport scenario where a train
moves back and forth a line of 5 stops. The train drives 8 full
cycles per day and as moving along the line in one direction
gives us 4 trips between the stops, the timetable consists of
4 ·2 ·8 = 64 trips are offered each day. As individual travelers
want to travel between two stops that are not necessarily
connected by a single trip, a journey can consist of one or
multiple trips. We will assume passengers always want to
travel in the direction of their destination and as such for
each origin-destination (OD) pair there are 8 different time
slots at which passengers can make their journeys.

In order to facilitate the flow of passengers, the trains
need to be long enough in order to allow comfortable trans-
portation. To achieve this, the operator monitors utilization
of vehicles and adapts the assigned number of rolling stock
units to each train accordingly. The operator can decide how
often the observed utilizations are evaluated to build a new
rolling stock model. In this experiment, we will assume that
this will happen periodically. The number of rounds after
which the operator produces a new rolling stock schedule
will be referred to as the reschedule period, denoted by an
integer k.

5.1 Capacity Allocation
As the use of rolling stock units determines a significant

amount of the operational costs of a public transport operator,
they try to monitor the utilization of the train vehicles and
adapt the capacities if necessary. The typical model used
to determine the rolling stock allocation in these situations
is by constructing the network of possible train movements,
specifying a minimum demand on the arcs that correspond
to passenger trips and look for a minimum cost circulation [6]
based on operational costs.

We implemented a module in the simulation that represents
an operator which dynamically optimizes demand. During
each round of the simulation, train utilization for each trip
is recorded. After k rounds, the demand of a trip is set to
µ+ 2σ, where µ is the mean utilization and σ its standard
deviation during those k rounds. We chose this rule because
similar rules are employed by real operators. The capacities
of each trip are then calculated according to a rolling stock
circulation, where we define a cost of 1000 per unit used and a
costs of 1 for moving a unit between consecutive stops on the
line. These numbers represent that buying and maintaining
rolling stock units is a lot more costly than moving them
around. We also assume that storing a unit at a station
does not impose any costs. As a result, the minimum cost
rolling stock circulation will minimize the number of units
required before minimizing the movement costs, given that
the defined demand must be met.

We use a minimum cost circulation algorithm [6] (which
shares quite a lot of similarity with the well known augment-
ing path methods for max flow) to obtain the capacities.
Although more efficient algorithms exist for this problem,
the augmenting path method is straightforward to implement
and fast enough for our simulations. The input network is vi-
sualized in Figure 1. The straight arcs represent movements
between the stops and must carry the determined demands.
The circular arcs represent storing a vehicle at a stop. The
overnight arcs represent the purchase costs of the vehicles
and the overnight balancing movements.

While the algorithms employed by operators need to take
many different types of rolling stock and regulations into
account [5], for reasons of simplicity and interpretability we
assume that we have only one type of rolling stock with a
nominal capacity of 10 seats.

5.2 Experimental Setup
In order to set up the simulation, we define a resource set

that consists of the trips, so based on the 5 stops and 16
timeslots, we get m = 64 resources. The choice set of an
individual agent is generated as follows: we pick two stops
o 6= d from among the five stops. By choosing o as the origin
and d as the destination, the direction along the line is defined.
We then pick 3 from the 8 available time slots corresponding
to this direction in order to define the acceptable journeys.
The choice set then consists of the empty set and the sets of
trips corresponding to the journeys drawn randomly. Again
we work with threshold based scoring functions where the
threshold is picked uniformly from { 5

10
, 6
10
, . . . , 1}.

For the purpose of simplicity, we use only one type of agent
during this experiment: the average payoff agent. One of the
reasons to choose this agent implementation is that software
packages for dynamic traffic equilibrium computations with
feedback use this approach. We pick the number of agents
simulated as n = 1000. The reason to take a relatively large
agent population is because we have 64 trips and as each
trip should have at least one unit of rolling stock available,
the available capacity is at least 640. In order to have a
high probability to facilitate all the demand during the first
rounds of the simulation, we set the initial demand of rolling
stock units for each trip to 5. We also checked initial rolling
stock counts of 1 and 10 units and our findings were robust
under these variations.

Our goal is to evaluate the effect of different rescheduling
periods. As the demand observed depends on the length of
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Table 2: Results of the simulation study where the effect of rolling stock optimization on average payoff, operator costs and
rolling stock units required is evaluated. The measures at round 100 of each simulation are reported, for different rescheduling
periods (k) of 1, 5 and 10.

k = 1 min mean (±std.) max
utl 0.38 0.42 (±0.02) 0.46
posc 0.60 0.73 (±0.05) 0.84
avg 0.08 0.19 (±0.04) 0.28
cost 2092 2532 (±498.5) 3112
units 2 2.43 (±0.497) 3

k = 5 min mean (±std.) max
utl 0.58 0.60 (±0.015) 0.66
posc 0.74 0.85 (±0.03) 0.92
avg 0.28 0.43 (±0.04) 0.50
cost 3166 4120 (±314) 4120
units 3 3.9 (±0.31) 5

k = 10 min mean (±std.) max
utl 0.62 0.66 (±0.01) 0.70
posc 0.76 0.86 (±0.03) 0.92
avg 0.36 0.48 (±0.04) 0.56
cost 4188 4219 (±142) 5208
units 4 4.02 (±0.14) 5

the rescheduling period, we evaluated periods of 1 round,
5 rounds and 10 rounds. For each of these rescheduling
policies, we generate 50 agent populations of choice sets with
corresponding thresholds. For each population we then run
2 simulations of 50 rounds.

5.3 Results and Discussion
The time series distributions of the observed values of

utl and posc during the 100 simulation runs for each of the
three policies are presented in Figure 2. The distributions
of average payoffs, the operational costs (according to the
minimum cost rolling stock circulation) and the number
of rolling stock units utilized during the last round of the
simulation are presented in Table 2.

As we increase the length of the period, we can observe
that utl increases. If the reschedule period is 1 round, we
can observe from Figure 2a that it converges to a mean of
0.42. For a reschedule period of 5 rounds it converges to
a mean of 0.6 (Figure 2c) and for a reschedule period of
10 rounds it converges to a mean of 0.66 (Figure 2e). One
possible explanation for the fact that longer periods give a
higher value for utl is that a longer reschedule period has
the potential to yield a more stable mean and possibly more
accurate standard deviation (except for the case where the
period is 1; then the standard deviation is always 0). As
the mean and standard deviation have direct effects on the
demand and thus the capacities that are calculated, they
seem likely causes for the observed behavior.

For the fraction of agents that utilize a resource and have
a positive payoff posc, we can observe that it converges to a
value of 0.73 for a reschedule period of 1 round (Figure 2b), to
a value of 0.85 for a reschedule period of 5 rounds (Figure 2d)
and to a value of 0.86 for a reschedule period of 10 rounds
(Figure 2f). The 1 round scenario has a higher standard
deviation than the other scenarios .

While both the utl and posc have higher averages for longer
reschedule periods, Figure 2 also shows slower convergence
for longer reschedule periods. Table 2 also suggests that
longer reschedule periods lead to higher costs and a higher
number of rolling stock units required. However, this can be
explained by the increase of the utl value. A final interesting
observation in Table 2 is that the average payoff for the
agents also increases if we use longer periods.

Our results suggest that there are many disadvantages for
the single round reschedule period. Increasing the period
may lead to higher costs, but the number of passengers
using one of the trains increases as well, which can lead
to extra revenue. For future research we aim to search for
different approaches to determine the demand for the rolling
stock circulation based on the utilizations observed in the
simulation. A different approach to the µ+ 2σ rule would
be to adapt demand based on observed scores.

6. COMBINATORIAL ASPECTS
In the original “El-Farol Bar” model, it is not difficult to

see that the ideal utilization of the bar lies at 60%, because
all agents have the same payoff. In our extension it is not
easy to determine the ideal utilization, as we are allowed
to have agents with different scoring functions assigned to
the same resource. As a result, it can be the case that for a
single resource, some agents have a positive payoff and others
have a negative one. The individual choice sets complicate
matters even further. As a result, it is a combinatorial
problem to maximize pos(x). We will show this by proving
the NP-completeness of the related decision problem.

Theorem 1. For a given instance of the game, deciding
whether there exists a valid outcome x ∈ O such that all
agents have a positive payoff (i.e. whether pos(x) is equal to
1) is NP-complete, even if we have threshold scoring func-
tions with 2 different thresholds and we allow only singleton
resources in the choice sets.

Proof. We will show NP-hardness by reduction from the
k–Set Cover problem [9]. In the k–Set Cover problem
we are given a collection A = {A1, . . . , An} of n sets, a set
of all elements U =

⋃
i∈N Ai and a positive integer k. We

have to decide whether there exists a subset A′ ⊆ A such
that |A′| ≤ k and

⋃
A∈A′ A = U .

We now introduce |U | regular agents and |A| − k grumpy
agents. We introduce a mapping between the sets in A and
the resources. Each element in e ∈ U is represented by a
regular agent which has a choice set that consists of singleton
resources corresponding to the sets in A containing e. The
grumpy agents have a choice set with a singleton for every
resource. We define the payoff functions such that the regular
agents have a positive payoff as long as they have chosen
a resource, and the grumpy agents have a positive payoff
if they are exclusively assigned to a resource (if we fix all
cap(r) = 1, then θi = n if i is a regular agent and θi = 1
if i is a grumpy agent). As a result the grumpy agents can
only have a positive payoff if they are assigned to resources
in such a way that all the other agents can be assigned to
the remaining resources. By construction of the choice sets,
this is only possible if the remaining k resources that are not
utilized by the grumpy agents correspond to sets that are
able to cover all elements. Thus, we have reduced the k-Set
Cover problem into our decision problem with 2 threshold
scoring functions and singleton choice sets.

NP-completeness then follows from the fact that given
a vector x, we can easily check whether it is feasible and
whether indeed pos(x) = 1.

In order to understand how the reduction works, we provide
an example in Table 3. Here the A’s and e’s represent
the sets and elements of the k-Set Cover instance. The
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(a) utl when rescheduling period k = 1 (b) posc when rescheduling period k = 1

(c) utl when rescheduling period k = 5 (d) posc when rescheduling period k = 5

(e) utl when rescheduling period k = 10 (f) posc when rescheduling period k = 10

Figure 2: Results of the capacity rescheduling experiments. The dark line shows the mean over all 100 experiments, the dark
gray area is one standard deviation away from the mean and the light gray area shows the minimum and maximum values
observed.
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Table 3: An example reduction from k-Set Cover to a game instance.

e1 e2 e3 e4 e5
A1 × ×
A2 × ×
A3 × ×
A4 × ×
A5 × ×
(a) An example instance of a k-Set Cover problem.

Agent Ci

a1 {∅, {1}, {5}}
a2 {∅, {1}, {3}}
a3 {∅, {3}, {4}}
a4 {∅, {2}, {4}}
a5 {∅, {2}, {5}}
g1 {∅, {1}, {2}, {3}, {4}, {5}}
g2 {∅, {1}, {2}, {3}, {4}, {5}}

(b) The corresponding choice sets for k = 3

corresponding game instance contains the a agents for the
elements and 5 − k = 2 grumpy agents denoted by the g
agents. For k = 3, we can assign the two grumpy agents to
resource 4 and resource 5, as the other agents are covered by
the remaining resources. If we would now change k to 2, we
would need to add an additional grumpy agent. However, we
cannot give a positive payoff to both this additional grumpy
agent and all the regular agents at the same time. This
is consistent with the fact that there is no solution for the
k-Set Cover instance if k = 2.

7. CONCLUSION AND FUTURE WORK
We have evaluated the effect of information disclosure

and capacity optimization in a minority game designed to
study crowding effects in public transport. The inclusion of
heterogeneous agents poses many new challenges. From the
theoretical perspective there are questions to what extend
observations for the original minority game, such as the
relation between memory length and efficiency, still apply.
From the practical perspective, the question is whether an
operator can influence and manage the cooperation of the
agents in order to stimulate the efficient utilization of the
vehicles. We have conducted two simulation studies where
we focused on the practical challenges. In the first study
we evaluate the effect of different information policies in a
scenario where every agent uses at most a single trip every
round. We find that disclosing more information attracts
more agents, but that this comes at the cost of lower payoffs.
This trade-off is influenced by the number of agents and the
available capacity in the system.

In the second simulation study, we evaluate the effect of
adaptive capacity management in the context of railway
transportation. Here the agents make a journey along a
line. They have to choose a time to travel between an
individually assigned origin and destination stop every round.
As such journeys can cross multiple stops and thus overlap
on the line, more complex patterns of agent interaction can
emerge. We find that the number of rounds utilizations are
recorded before capacities are re-optimized has an impact on
the number of agents utilizing the system and their payoffs.
Rescheduling every round seems to lead to worse system
performance than rescheduling every 5 or 10 rounds.

Our studies show that we are able to evaluate and compare
the effects of different policies for information and capacity.
The question remains whether we can improve on the policies
we evaluated. We think that policies that act on agents that
repeatedly have a low payoff are an interesting area for further
research.
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ABSTRACT 
The goal of this paper is to define and analyze the model of online 
routing games in order to be able to determine how we can 
measure and prove the benefits of online real-time data in 
applications like navigation by autonomous cars. Based on the 
models of algorithmic game theory and online mechanisms, we 
define the formal model of online joint resource utilization games 
and, as their specific version, the model of online routing games. 
We study simulation runs of online routing games in a Braess 
network, and define three different notions of the benefit of online 
data. We outline the possibility of different classes of online 
routing games and start to investigate the class of simple naïve 
online routing games that represents the current commercial 
navigation systems. We prove that in the class of simple naïve 
online routing games stability is not guaranteed. We prove that in 
simple naïve online routing games if a single flow enters the 
network, then the flow on some edge inside the network at some 
time may be bigger than the one that entered the network. As a 
consequence we prove that in simple naïve online routing games 
the worst case benefit of online data may be bigger than one, i.e. it 
may be a “price”. By defining these frames, we open new 
theoretical research opportunities for important application fields. 

Categories and Subject Descriptors 
I.2.11 [Computing Methodologies]: Distributed Artificial 
Intelligence – Multiagent systems. 

General Terms 
Performance, Design, Economics, Experimentation, Theory. 

Keywords 
online routing games, benefit of online data 

1. INTRODUCTION 
Five ongoing trends became more and more accomplished in the 
history of computing: ubiquity, interconnection, intelligence, 
delegation and human-orientation [1]. The current wave of this 
progress is marked by the widespread availability of online real-
time data which opens new possibilities in several application 
areas like real-time manufacturing intelligence, industrial internet, 
internet of things, emergency and disaster information services, 
and intelligent road transport systems. The most challenging 
applications are those where autonomous agents have access to 
online real-time data and create plans how to achieve their goals 
in an environment where they jointly utilize resources that 
become more costly as more agents use them. In these 

applications agents are dynamically arriving and departing when 
they complete their plans. The plans are created by exploiting 
online data that describe the current status and the current cost of 
the resources. There is uncertainty about the feasible decision of 
an agent, because the cost of the resources will change by the time 
the agent starts to use them: departing agents will release the 
resources as they complete their plans, agents simultaneously 
creating their plans will influence each other’s costs, and agents 
arriving later may also influence the costs of the resources used by 
agents already executing their plans. Because game theory is an 
appropriate foundation for multi-agent systems [2], we call this 
type of applications as online joint resource utilization games 
which we will define in this paper. Note that these games are 
different from resource allocation or minority games [4] which are 
simultaneous one shot or repeated simultaneous games where 
there might be some coordination among some of the agents. In 
contrast, online joint resource utilization games are continuous 
and non-cooperative games exploiting real-time online data.  

A well-known online joint resource utilization game is car 
navigation using real-time data. In this environment traffic 
participants generate and use online traffic information to create 
their own self-optimized plan for their route which contain road 
sections jointly utilized with other agents. Car navigation using 
real-time data is a special case of online joint resource utilization 
games, because the allowed order of the resources in the plan of 
the agents is restricted by the structure of the road network. From 
theoretical point of view we call real-time data based car 
navigation applications as online routing games. Note that in our 
approach each driver makes an individual real-time data based 
decision when it enters the network, whereas in other approaches 
[5] drivers learn the best route to select, based on past selections. 

Two well-known examples of real-time information based 
navigation systems are Google Maps and Waze. The planning in 
these systems is done on central server(s) which may play similar 
role to the virtual environment in the anticipatory vehicle routing 
of [3]. There are other traffic management systems that combine 
central planning and local freedom, like the PLANETS system 
[12] in which global control strategy is provided from a Traffic 
Management Centre, but traffic participants have a freedom to 
make decisions autonomously. In our view, self-interested agents 
will not conform to a central strategy if it is not individually 
rational, so the global strategy must emerge from the agents’ 
decision. Therefore we will not have in our model an explicit 
concept of a central planner or a virtual environment even if the 
agents use the services of these abstractions. 

Although it is widely believed and intuitively we might think that 
traffic route planning results in shorter travel time if we take into 
account the real-time traffic information (for example 
congestions), but no theoretical study is known if real-time data 
based car navigation produces better traffic or not. There is need 
for such theoretical studies, because autonomous cars are being 
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designed and the usage of online navigation systems based on the 
simple naïve strategy discussed in this paper is spreading and we 
do not even know how to measure their benefit, not to mention 
how to optimize their behavior. The goal of this paper is to define 
and analyze the model of online routing games in order to be able 
to prove the possible benefits of online real-time data.  

Neither online joint resource utilization games nor online routing 
games have been formally defined and studied in detail, so we are 
advancing the state of the art with the work of this paper. There is 
related research on routing games without online information in 
the algorithmic game theory field and there is research on auctions 
with online information in the online mechanisms field. We are 
combining these two fields to create the new theoretical model. 

Algorithmic game theory [11] studies routing games in which end 
users simultaneously select a full route to their destination in a 
network that is susceptible to congestion. It is well known that 
individually self-optimizing travel routes does not necessarily 
result in optimal traffic (optimal for the sum of the travel times) 
and each participant may have longer travel time than with central 
planning. This is known as the “price of anarchy” which was 
explored by 2012 Gödel prize winners Roughgarden and Tardos. 
In their paper [9] they investigated the old conundrum in 
transportation science known as the “Braess's paradox” [10]. The 
algorithmic game theory investigations revealed important 
properties of routing games, however the algorithmic game theory 
approach includes assumptions which do not handle the dynamic 
online information environment. 

Dynamic agent systems have been studied in the framework of 
online mechanisms, like in [7]. Online mechanisms [8] extend 
mechanism design to dynamic environments where agents 
continuously enter and leave the environment. Agents in online 
mechanisms make decisions without knowing the future. Agents 
have a type which is described by their time of arrival, time of 
departure and their valuation of the resources to be allocated. The 
utility of the agents is the difference between their valuation and 
the cost of the allocated resource. While online mechanism design 
is good for certain types of dynamic environments, its 
assumptions do not handle the decentralized nature of real-time 
data based car navigation systems. Here decentralization refers to 
both decision making by all the agents and cost value 
determination by the resources at the actual time of resource 
utilization. In online mechanisms the cost of the allocated 
resource is determined at negotiation time by a centralized agent, 
while in real-time data based car navigation the final cost is 
determined by the resources when the resource is actually used, 
and the final cost may be different from the one at decision time. 

In order to be able to forecast the behavior of the dynamic agent 
environments of online joint resource utilization games and to be 
able to measure and prove the benefits of online real-time data, 
our contributions are the following:  

Based on the models of algorithmic game theory and online 
mechanisms, we define the first model of online joint resource 
utilization games and, as their specific version, the model of 
online routing games.  

We study the simulation of an online routing game in a Braess 
network and point out that there are worst, best and average 
benefits of online real-time data, and we define these notions. 
We outline the possibility of different classes of online 
routing games with different strategies. 

We prove three properties of the class of the simple naïve 
strategy online routing games and the benefit of online real-
time data in these games. 

With these advances we open new research opportunities for 
important application fields, define the main characteristics that 
can form the basis to guide future research and help to compare 
the results of future research contributions. 

2. Related Work 
In this section we highlight the main theoretical findings of 
routing games and online mechanism design, because the first 
model of online joint resource utilization games presented in this 
paper is based on them and the research in the new field of online 
joint resource utilization games has to answer similar questions. 

2.1 Routing Games 
Algorithmic game theory studies networks with source routing 
(section 18 in [11]), in which end users simultaneously choose a 
full route to their destination and the traffic is routed in a 
congestion sensitive manner. Two models are used: nonatomic 
selfish routing and atomic selfish routing. Nonatomic routing is 
meant to model the case when there are very many actors, each 
controlling a very small fraction of the overall traffic. Atomic 
routing is meant to model the case when each actor controls a 
considerable amount of traffic. Both models are studied in detail 
and showed similar properties. The main difference is that 
different techniques are required for their analysis, because the 
nonatomic model basically has continuous functions having 
unique extreme values, while the atomic model has discrete 
functions approximating the extreme values at several points. 

The algorithmic game theory model of the routing problem is the 
(G, r, c) triple, where 

G is the road network given by a directed graph G=(V, E) 
with vertex set V and edge set E; 

r is the total traffic flow given by a vector of ri traffic flows 
with ri denoting the amount of flow on the Pi trip which is 
from the si source vertex of G to the ti target vertex of G; and 

c is the throughput characteristic of the road network given by 
a cost function with ce: R

+→R+ for each e edge of G mapping 
the total traffic on edge e to the travel time on that edge. 

In this model the G graph may contain parallel edges; the ce cost 
functions are nonnegative, continuous and nondecreasing; the ri 
traffic flow on the Pi trip is deterministically routed somehow on 
the paths leading from si to ti; the cost of a path is the sum of the 
costs of the edges in the path at a given flow; and the cost of an ri 
traffic flow on the Pi trip is the sum of the cost of all the paths in 
Pi. In the case of a nonatomic routing problem the ri traffic flow 
on the Pi trip may be divided arbitrarily among several paths 
leading from si to ti, while in the case of an atomic routing 
problem the ri traffic flow on the Pi trip can be sent on one single 
path leading from si to ti. We assume that in the routing problem 
each actor is interested in an ri traffic flow on a Pi trip, therefore 
we will use the term “actor”, “agent” and “ri traffic flow” 
interchangeably. 

A flow distribution is optimal if it minimizes the cost of the total 
traffic flow over all possible flow distributions. A flow 
distribution is an equilibrium flow distribution if none of the 
actors can change its traffic flow distribution among its possible 
paths to decrease its cost. The equilibrium flow distribution is a 
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rational choice for every autonomic actor, because deviating from 
the equilibrium would increase the cost for the actor. 

It is proven (section 18 in [11]) that every nonatomic routing 
problem has at least one equilibrium flow distribution and all 
equilibrium flow distributions have the same total cost. The price 
of anarchy is the ratio between the cost of an equilibrium flow 
distribution and the optimal flow distribution. If the cost functions 
are of the form ax+b , then the price of anarchy in any nonatomic 
routing problem is not more than 4÷3 . If the cost functions can be 
nonlinear, then one can create cost functions to exceed any given 
bound on the price of anarchy of nonatomic routing problems. 

In atomic routing problems the existence of equilibrium flow 
distribution is not always guaranteed. Atomic routing problems 
have equilibrium flow distribution if every ri traffic flow has the 
same value or if the cost functions are of the form ax+b . If there 
are more than one equilibrium flow distributions, then their total 
costs may be different. If the cost functions of an atomic routing 
problem are of the form ax+b , then the price of anarchy is at 
most (3+ √5)÷2 . If the cost functions of an atomic routing 
problem are of the form ax+b  and in addition every ri traffic flow 
has the same value, then the price of anarchy is at most 5÷2 . 

It is known that if the routing problem has an equilibrium and the 
actors try to minimize their own cost (best-response), then the 
traffic flow distribution converges to an equilibrium. 

The algorithmic game theory investigations of the routing game 
revealed important properties, however the algorithmic game 
theory model contains the following assumptions: 

a) the throughput characteristic of the network does not 
change with time and the drivers can compute this 
characteristic or learn it by repeatedly passing the road 
network; 

b) the drivers simultaneously decide their optimal route; and 

c) the outcome travel time for a given driver depends on the 
choice of all the drivers and the characteristic of the network, 
but not on the schedule of the trip of the drivers. 

These assumptions do not completely describe car traffic where 
the drivers use car navigation with online data, in which case 

a) the throughput characteristic of the network changes with 
time and the drivers cannot compute or learn this 
characteristic by repeatedly passing the road network, because 
there may be an accident on a road and the road becomes 
susceptible to congestion, and then later when the accident is 
cleared the road is less susceptible to congestion; 

b) the drivers do not decide their route at the same time 
simultaneously, because drivers continuously enter the road 
network and decide their optimal route when they enter the 
road network and the decision is based on the current live 
information about the status of the road network; and 

c) the outcome travel time for a given driver depends not only 
on the current characteristic of the network and the route 
choice of all the drivers currently entering the road network, 
but also on the trip schedule of other drivers that entered the 
network previously, are currently entering the network or will 
enter the network later. 

The issue of traffic dynamism is studied in the field of dynamic 
traffic assignment [6], but there they investigate the time-varying 
properties of traffic flow, whereas here we assume that the traffic 

flow is constant and only the cost functions may change. In our 
investigations the critical issue is the sequential decision making 
of the agents. This partly handled by online mechanisms. 

2.2 Online Mechanisms 
Online mechanism design problem is a multi-agent sequential 
decision making problem. When agents participate in the 
mechanism, they report to a central planner for a given period 
their request for certain resources at given valuations (which may 
be different from their private values). The central planner decides 
which resources at which cost are allocated to which agent in each 
time step. All agents are trying to maximize their utility. 

The model of the online mechanism problem is the (t, Θ, k, c, u) 
five tuple, where 

t={1, 2, …} is a possibly infinite sequence of time periods; 

Θ is the set of agent types where each agent type is 
characterized by the θi =(ai,di,vi(t)) triple where ai∈t is the 
arrival time of the agent, di∈t is the departure time of the 
agent, and vi(t) is the valuation function of the agent in time 
period t∈[ai,di], the agent has no value for t∉[ai,di];  

k=(k1, k2, … ) is a sequence of decision vectors with kt=(kt
1, 

kt
2, …) decision vector made in time period t and kt

i the 
decision made for agent ai; 

c is the cost function of the decisions and c(kt
i) is the cost for 

agent ai in time period t; 

u is the utility function of the agents where ui(t)=c(kt
i) - vi(t) is 

the utility for agent ai in time period t, and all agent aim to 
maximize their utilities; 

In this model the Θ set of agent types may be model free when no 
probabilistic information is known about the agents, or may be 
model based if probabilistic information is known. The agents 
may report values different from their private agent type, but only 
for the time period when they are present, at the beginning of the 
reported time period and without knowing the reports of the other 
agents (closed direct revelation). Usually the goal is to design 
online mechanisms where the truthful revelation is the dominant 
strategy. The effectiveness of online mechanisms is measured 
similarly as that of online algorithms: the performance of the 
online mechanism is compared with that of an offline mechanism 
that has the complete information about all future agent types. 

The dynamic nature of online mechanisms is a good starting point 
to model online joint resource utilization games, however the 
differences are considerable: in contrast with online mechanisms, 
there is no central planner (agents make their own plan), there is 
no arrival and departure time (agents want to start their plan when 
they arrive), and the actual cost is determined not at the decision 
time, but at utilization time.  

3. The Model of Online Joint Resource 

Utilization Games 
In order to have a generic model, we are now defining the model 
of the online joint resource utilization game as an extension of the 
algorithmic game theory model of the routing problem and the 
online mechanisms. The model resembles the algorithmic game 
theory routing game model in the concepts of flow, cost and 
resource, and it resembles the model of online mechanisms in the 
sequences of time periods and decisions. T time unit is introduced 
in order to be able to compute the rate of resource utilization.  
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The model of the online joint resource utilization game is the (t, 
T, G, c, r, k) sextuple, where 

t={1, 2, …} is a possibly infinite sequence of time periods; 

T is a natural number, T time periods give one time unit; 

G is a set of resources where each e∈G resource is 
characterized by a ce cost function and te resource utilization 
time; 

c is the cost function of the resources with ce:R
+→R+ for each 

e∈G mapping the resource utilization flow (the total number 
of agents starting to use the e resource from time period t-T to 
time period t) to the current cost of the resource; 

r is the total resource utilization flow given by a vector of ri 
resource utilization flows with ri denoting the resource 
utilization flow (number of agents in T time periods) for the Pi 
plan which is a set of vectors containing elements from G; 

k=(k1, k2, … ) is a sequence of decision vectors with kt=(kt
1, 

kt
2, …) decision vector made in time period t and kt

i the 
decision made by the agents of the ri resource utilization flow 
in time period t. 

In this model the ce cost functions are nonnegative, continuous 
and nondecreasing; the ce cost functions have a fixed minimum 
value plus a flow dependent part, where the flow dependent part is 
not known to any of the agents of the model and the agents can 
learn the actual cost only when an agent finishes using the 
resource and reports its cost; the ri resource utilization flow is 
given by T÷n i  where ni is a natural number constant, meaning 
that one agent enters the game in each cycle of ni time periods (0 
agent entering the game in time periods 1, 2, … ni-1 and 1 agent 
entering the game with the goal of Pi plan in the ni time period); 
the kt

i decision is to instantiate the Pi plan to one of its vectors; 
and the actual cost of a plan instantiation (e1, e2, e3, …) for a flow 
starting at time period t is ce1(t)+c e2(t+t e1)+ 
ce3(t+t e1+t e2)+… , i.e. the actual cost of a resource is 
determined at the time when the usage of that resource starts. 

3.1 The Model of Online Routing Games 
We are now defining the model of online routing games as online 
joint resource utilization games with a restriction on the allowed 
plans represented by a graph and with somewhat different cost 
functions. The typical application of online routing games is real-
time data based car navigation where the graph represents a road 
network, the agents represent the cars, resource utilization means 
passing a road section and the cost of resource utilization 
represents the travel time on a road section. 

The model of the online routing game is the (t, T, G, c, r, k) 
sextuple, where 

t, T and k are the same as in online joint resource utilization 
games; 

G is a directed graph G=(V, E) with vertex set V and edge set 
E where each e∈E is characterized by a ce cost function which 
is equal to its utilization time; 

c is the cost function of G with ce:R
+→R+ for each e edge of G 

mapping the flow to the travel time on that edge, but not less 

than the remaining cost of any other agents currently utilizing 
that edge increased with the time gap of the flow of the agent1;  

r is the total flow given by a vector of ri flows with ri denoting 
the flow aiming for a Pi trip from a si source vertex of G to a ti 
target vertex of G; 

In this model the G graph may contain parallel edges. The ce cost 
functions are nonnegative, continuous and nondecreasing, their 
variable part are not known to any of the agents of the model and 
the agents can learn the actual cost only when an agent exits an 
edge and reports it; the ri flow is given by T÷n i  where ni is a 
natural number constant. The kt

i decision is how the Pi trip is 
routed on a single path of the paths leading from si to ti and the 
actual cost of a path (e1, e2, e3, …) for a flow starting at time 
period t is ce1(t)+c e2(t+c e1(t))+c e3(t+c e1(t)+ 
ce2(t+c e1(t)))+…  , i.e. the actual cost of an edge is 
determined at the time when the flow enters the edge.  

The agents can learn the actual cost of the edges only when an 
agent finishes using the resource and reports its cost. Because 
agents do not report cost values in each time step, the agents 
interested in the cost values must do reasoning and decrease the 
last reported value by taking into account the time elapsed since 
the last reporting event (it is like pheromone evaporation in [16]). 

The online routing game model can accommodate changes of the 
c cost function over the t sequence of time periods, because the 
agents can get information about the actual cost only from the cost 
reported by the agents exiting an edge. 

3.1.1 Routing strategy 
The critical point in the online routing game is how to determine 
the best decision vector k. The algorithmic game theory approach 
assumes that the agents have full information about the cost 
functions and the theory tells what the best strategy is in the case 
of simultaneous decisions, but does not tell how the agents can 
achieve this. In online mechanisms a central planner decides 
which resources at which cost are allocated to which agent. In 
online routing games there is no central planner. The agents in 
online routing games will have to apply algorithms similar to 
online algorithms [13]. At this time we are not investigating how 
the agents of online routing games determine their strategy, 
instead we are investigating how current navigation systems 
perform in online routing games. 

In practice, typical navigation software in cars use simple shortest 
path search in the road network, possibly modifying the distances 
with the online information about the actual traffic delay. We call 
this decision strategy as simple naïve strategy. We are 
investigating this strategy in this paper because of its practical 
importance. Note that the simple naïve strategy is by definition 
deterministic, thus it is a pure strategy. 

Although online routing game has some resemblance to a 
sequence of atomic routing problems of the algorithmic game 
theory approach, online routing game is much more complex than 
the atomic routing problem and we do not know any theoretical 
results regarding the existence of equilibrium flow or something 
like the price of anarchy in online routing games. 

                                                                 
1 In this model cars cannot overtake the cars already on the road 

and there is a time gap, i.e. minimum “following distance”.  
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Figure 1.  The SNBraess network. 

 

Figure 2.  The diagram of the travel time of the cars in the SNBraess road network at incoming traffic flow 120. 
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Figure 3.  Cost in the SNBraess network depending on the 

flow using the algorithmic game theory approach. 

4. Simulation of an Online Routing Game 
Several authors investigated with simulation tools how the traffic 
would behave if the majority of vehicles used traffic information 
in their route planning and concluded that online data has to be 
used carefully in traffic scenarios [15]. These investigations did 
not have theoretical conclusions. In order to have a better 
understanding of online routing games and formally prove what 
others suspected from empirical investigations, we are 
demonstrating simulation runs in a small instance of online 
routing games which we call Simple Naïve Braess (SNBraess) 
online routing game, because it investigates the real-time data 
based car navigation problem on a network corresponding to the 
Braess paradox [10] and the decision mechanism uses the simple 
naïve strategy. We selected the SNBraess online routing game, 
because the simple naïve strategy has practical importance and 
because the Braess paradox is a distinguished study area of 
transportation science and algorithmic game theory. The analysis 
of simulation runs in this paper is not a full statistical analysis, 
because the goal is to understand the behavior of the agents. 

The SNBraess=(t, T, G, r, c, k) instance of online routing games 
used in the simulations has the following concrete values 

T=600, modeling one minute. 

G is the road network (shown in Figure 1. ) is given as a four 
node directed graph with V=(v0, v1, v2, v3) and E=(e1, e2, e3, 
e4, e5, e6). The edges are e1=v0→v1, e2=v0→v2, e3=v1→v2, 
e4=v2→v1, e5=v1→v3, and e6=v2→v3. Note that the e4 edge is 
included to allow bidirectional travel between v1 and v2 and to 
have an uncongested route from the source to the destination. 

r=(r1) is the total traffic flow with only one flow on the P1 trip 
from the v0 source vertex of G to the v3 target vertex of G; 

c is the cost function of the road network with ce1=1+x÷10 , 
ce2=15 , ce3=7.5 , ce4=7.5 , ce5=15 , ce6=1+x÷10 , where 
x is the total number of agents entering an edge from time 
period t-T to time period t. As discussed in the previous 
section, the variable part of the cost function is not known to 
the agents of the model. 

k=(k1, k2, … ) is a sequence of decision vectors with kt=(kt
1) 

decision vector made in period t. The decision is a simple 
naïve decision mechanism which is based on the currently 

reported costs and selects the path on the P1 trip that currently 
has the minimum reported cost. The P1 trip has the {p1, p2, p3, 
p4} set of paths, where p1=(e1,e5), p2=(e1,e3,e6), p3=(e2,e6), 
p4=(e2,e4,e5) and the costs of the paths used for decision 
making are the sum of the cost of the edges at the time of 
decision making, e.g. cp1(t)=c e1(t)+c e5(t) .  

From algorithmic game theory point of view the Braess road 
network (without online data) is used to demonstrate the 
“paradox” that the equilibrium flow has a price of anarchy with at 
most 4÷3  ratio. The “paradox” is that if nonatomic selfish flow 
allocation is used, then at some flow values the e3 edge increases 
the total cost (“price of anarchy”), and without the e3 edge 
(seemingly smaller throughput) the cost is smaller (faster travel). 
The cost values (in this case travel times) of the trips in the 
SNBraess network from the algorithmic game theory point of view 
are shown with red dashed line in the diagram of Figure 3. as a 
function of the incoming traffic flow. The figure shows the 
optimal case of central planning (blue line) as well. When there is 
a difference, then “price of anarchy” is present. 

We have investigated the cost values in the SNBraess online routing 
game by simulation runs. A constant traffic flow was entered into 
the network from time zero and the history of the travel time of 
the cars arriving at their destination at node v3 during a simulation 
run of 411000 time periods were recorded in a diagram like in 
Figure 2. These travel time diagrams revealed different patterns 
depending on the amount of traffic flowing into the network. In 
some cases they had higher frequency variation with some sudden 
peaks, while in other cases the variations seemed to be smoother 
with some disturbance periods. Figure 2. shows the travel time 
diagram at incoming traffic flow of 120, which represents a heavy 
load in the “price of anarchy” range in the algorithmic game 
theory approach. This diagram, like the others, has a starting 
phase where the travel time is increasing as more and more cars 
are on the road. Later, as the shortest path gets congested, the 
drivers deviate and keep deviating to other routes, so the travel 
time does not seem to converge to a constant value. The travel 
time varies between 16 and 46.5 with an average of 30.73. 

Note that in this SNBraess road network a) if the routes are planned 
with optimal central control, then the travel time is 22.0, b) if the 
routes are planned in accordance with the algorithmic game 
theory approach, then the travel time is 22.5 (with price of 
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Figure 4.  Maximum, minimum and average travel times in the SNBraess road network at selected incoming traffic flows. 

anarchy), c) if the routes are planned with simple naïve strategy 
without real-time congestion delay information (i.e. all cars select 
the p2 path), then the travel time is 33.5, and d) if all cars select 
the p4 path which is not susceptible to congestion and is the 
longest path without congestion delay, then the travel time is 37.5. 

We cannot include too many travel time diagrams in this paper, 
instead we sum up the measured maximum, minimum and average 
travel time values at some selected incoming flows in graphical 
form on Figure 4. This figure includes the travel time for the 
algorithmic game theory approach (continuous red line) and the 
travel time for the simple naïve strategy that does not use online 
data (dashed black line). 

We can observe that at low incoming traffic flows the cars do not 
deviate from the shortest path, so the computed and the SNBraess 
travel times are the same. At higher flows there is fluctuation and 
the cars sometimes experience fast traffic, but often they 
experience considerable congestion delay and travel longer than 
the travel time of the simple naïve strategy without real-time 
congestion delay information. 

5. The Benefit of Online Real-time Data 
We would like to be able to tell if the agents are better off by 
making decisions based on online real-time data or not. In order 
to be able to compare the costs of the agents using online data 
with the costs of the agents not using online data, we have to 
know what we are going to compare with what. 

Oracle based evaluation 

If we take the approach of online algorithms, then we would 
compare the results of the online routing game with the results of 
an oracle that has all the information needed. One might think that 
in our case the oracle with all information would be the central 
planning2, because the central planner has all the information and 
can tell each agent which route to take. The central planner 
produces the travel times as shown by the blue line in Figure 3.  

The central planning oracle might be good to measure the global 
effectiveness of the agents in the SNBraess model, however it 
evaluates not only the benefits of making decisions based on 
online data, but in addition it evaluates the different decision 
making strategies as well. In the SNBraess model there is no 
coordination among the agents and the agents make online 
decisions using the simple naïve strategy, while in the central 

                                                                 
2 It is assumed that the central planner is able to produce the 

optimal flow distribution as defined on page 463 in [11]. 

planning and the algorithmic game theory approach the agents are 
coordinated and exploit their knowledge about the cost functions. 
Therefore if we want to evaluate only the benefits of online real-
time data, then we want to compare the results with an “oracle” 
using the same decision making strategy. 

Oracle with the same decision making strategy 

The decision making strategy of the SNBraess model is to select the 
path with the smallest cost (shortest travel time) using the current 
online real-time data and the agents do not have a cost model of 
the network. The corresponding decision strategy without online 
real-time data is the one which uses the shortest path without the 
variable part of the cost functions. The dashed black line in Figure 
4. shows this oracle. As we can see in Figure 4. the agents of the 
SNBraess model perform much better in some cases (minimum 
values), in average (average values) they perform better at higher 
incoming traffic flow range and sometimes in the worst case 
(maximum values) they perform worse, mainly in the medium 
flow range. 

Best, worst and average 

In the algorithmic game theory model there is equilibrium and the 
price of anarchy concept is the ratio between the equilibrium and 
the optimum. In the simulation runs of the SBBraess model there are 
maximum, minimum and average cost values at every incoming 
traffic flow. Later in this paper, in Theorem 1 we will prove that 
there are simple naïve strategy online routing games which do not 
have equilibrium at some flow values. If there is no equilibrium, 
then we must have different measures of the benefit of online real-
time data for the best, worst and average cases (which are 
guaranteed to exist if there are finite sequence of time periods).  

Depending on the type of application, we are interested in the 
different types of benefits. The most important is the worst case, 
because it can be used to provide a guarantee in critical 
applications. The best case can be used in applications, where we 
have to make sure that a certain value is achieved at least once. 
The average case is seldom useful in itself, usually we have to 
consider other statistical distribution parameters as well. 

Measure of the benefit of online real-time data 

We conclude the above discussion with defining the different 
benefits of online real-time data. If these benefits are greater than 
1, then they are in fact a “price” like the price of anarchy. 

Definition 1. The worst case benefit of online real time data at a 
given flow is the ratio between the cost of the maximum cost of 
the flow and the cost of the same flow with an oracle using the 
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same decision making strategy and only the fixed part of the cost 
functions.  

Definition 2. Similarly, the best case benefit of online real time 
data at a given flow is the ratio between the cost of the minimum 
cost of the flow (after the initial running up) and the cost of the 
same flow with an oracle using the same decision making strategy 
and only the fixed part of the cost functions. 

Definition 3. The average case benefit of online real time data at a 
given flow is the ratio between the cost of the average cost of the 
flow and the cost of the same flow with an oracle using the same 
decision making strategy and only the fixed part of the cost 
functions. 

6. Classes of Online Routing Games 
In the above sections we have seen that the decision strategy is 
important in online routing games. The aim is to select a decision 
strategy that results in costs close to the optimum. Although the 
above discussed simple naïve decision strategy is often applied in 
real world, it is not the best, because it does not alternate the 
agents of a flow among two or more paths, whereas the optimal 
central planning and the algorithmic game theory approach use 
several paths for the same flow. 

Further research is needed to study different online routing game 
decision strategies derived from other related games. In this paper 
we are only mentioning a possibility. In addition to the already 
discussed shortest path planning, we can start the development of 
decision strategies from resource allocation or minority games [4]. 
These games are simultaneous games containing some 
coordination as well, but in online routing games coordination is 
excluded. The coordination aspect could be replaced by some 
probabilistic value and each agent would randomly select its path 
in the network based on a probabilistic distribution. The optimal 
probabilistic distribution values could be determined using a kind 
of evolutionary algorithm like the one applied to the El Farol Bar 
problem in [14]. 

Online routing games using the same type of decision strategies 
belong to the same class of online routing games. Each class need 
to be evaluated how much benefit they make out of online real-
time data, in order to be able to determine the type of application 
where they are suitable. The evaluation should include formal 
proofs. In this paper we are formally analyzing the class of simple 
naïve strategy online routing games. 

7. Three Properties of the Class of Simple 

Naïve Strategy Online Routing Games 
We are now proving three properties of the simple naïve strategy 
online routing games. 

THEOREM 1. There are simple naïve strategy online routing games 

which do not have equilibrium at certain flow values. 

PROOF. We show some games that satisfy this claim. Let SN7.1 be 
a (t, T, G, r, c, k) simple naïve strategy online routing game. Let 
r=(r1) be the total traffic flow with only one flow on the P1 trip of 
G. Let P1={p1,p2} with p1 and p2 two different paths of P1. Let cnc1 
be the cost of p1 when there is no congestion on p1 and cc1 be the 
cost of p1 when r1 flows on p1. Similarly let cnc2 be the cost of p2 
when there is no congestion on p2 and cc2 be the cost of p2 when r1 
flows on p2. There might be cost functions such that 
cc1>c c2>cnc1 >c nc2  at r1 flow. In this case there is no 
equilibrium, because in the beginning p2 is selected by all agents, 

but as soon as the cost of p2 goes above cnc1, all agents select p1, 
so p2 becomes less congested and, as a result, the cost of p2 will 
drop below the cost of p1, so all agents will select p2 again, and 
the cycle starts again. □  

THEOREM 2. There are SN=(t, T, G, r, c, k) simple naïve strategy 

online routing games where the total traffic flow has only one 

incoming flow, i.e. r=(r1), however the flow on some of the edges 

of G sometimes may be more than r1. 

PROOF. We show some games where this is possible. Let SN7.2=(t, 
T, G, r, c, k) be a simple naïve strategy online routing game. Let 
r=(r1) be the total traffic flow with only one flow on the P1 trip of 
G. Let P1={p1,p2} with p1 and p2 two different paths of P1. Let 
p1=(e1,e3), p2=(e2,e3) be the edges of the paths. Let e2 be an edge 
not susceptible to congestion, c2 be the cost of e2, and c2>2˟T. 
Let e3 edge be susceptible to congestion. Let the e1 edge be 
susceptible to congestion and let the cost of e1 be such that cnc1 is 
the cost of e1 when there is no congestion on e1 and cc1 is the cost 
of e1 when r1 flows on e1, and 1.5 ˟c2>c c1>c2>c nc1 . This is 
possible at some r1 flow on the edge for example if the cost 
function is linear. When r1 starts to flow into G, then it goes on 
the p1=(e1,e3) path, because c2>c nc1 . In the beginning the cost of 
e1 is cnc1, but it is increasing and at some txc1 time (where t xc1 <T) 
the cost of e1 reaches c2. The c2 travel time will be reported to 
other agents when these agents exit e1, i.e. at t xc1 +c 2 time. From 
this time agents will select the p2=(e2,e3) path. This flow from e2 
will reach the e3 edge at t xc1 +c 2+c 2 time. We are going to show 
that at this time the flow from e1 to e3 already reached the r1 value 
and it is still r1. At time T the agents are still selecting the e1 edge, 
because T<0.5 ˟c2 and 0<t xc1 , so T< t xc1 +c 2, the path change 
time. Therefore the flow from e1 to e3 does reach the r1 value at 
T+cc1  time. Because T<0.5 ˟c2, c c1<1.5 ˟c2 and 0<t xc1 , we 
get T+cc1<t xc1 +c 2+c2, so the flow from e1 to e3 already reached 
the r1 value when agents start to flow from e2 to e3. The last agent 
selects the e1 edge at t xc1 +c2 time and because 0<t xc1  and 
T<0.5 ˟c2, this agent starts after T at full r1 flow therefore the 
cost for this agent is cc1. Therefore the flow from e1 to e3 does not 
stop until t xc1 +c 2+c c1 . Because c2<c c1 , we get 
t xc1 +c 2+c 2<t xc1 +c 2+c c1 , so the flow from e1 to e3 still has the 
r1 value when agents start to flow from e2 to e3. So the e3 edge will 
receive r1 flow from the e1 edge and some additional flow from 
the e2 edge at t xc1 +c 2+c 2 time, and the cost of the agents coming 
from the e1 edge is cc1. (Note that it is enough if G contains a sub-
graph as described in the proof of Theorem 2 and the r1 flow 
continuously flows into this sub-graph.) □  

THEOREM 3. There are SN=(t, T, G, r, c, k) simple naïve strategy 

online routing games where the worst case benefit of online real-

time data is greater than one, i.e. in these games the worst case 

benefit is a “price”. 

PROOF. Let us take the Let SN7.2=(t, T, G, r, c, k) simple naïve 
strategy online routing game example from Theorem 2 and let the 
cost of e3 be such that cnc3 is the cost of e3 when there is no 
congestion on e3, cc3 is the cost of e3 when r1 flows on e3. We 
know from Theorem 2 that there is some time when agents with 
cc1 cost from the e1 edge will flow into the e3 edge with r1 flow, 
and at the same time another flow will flow into the e3 edge, so 
the cost of these agents on the e3 edge will be some cc3+, which is 
greater than cc3, because the cost functions are non-decreasing. So 
the total cost of the agents on the p1 path will be 
c(p 1)=c c1+c c3+ . The oracle with simple naïve strategy without 
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online data would send all the time all traffic on p1 with 
c(p 1)=c c1+c c3  cost, so the worst case benefit of online real-
time data is (c c1+c c3+ )÷(c c1+c c3) . Because c c3+>c c3 , the 
worst case benefit of online real-time data is greater than one at 
this flow. □  

8. CONCLUSION 
Information and communication technologies allow that modern 
car navigation systems utilize live online data from traffic 
networks to optimize the route of autonomic vehicles. Several 
authors investigated with simulation tools how the traffic would 
behave if the majority of autonomic vehicles based their route 
planning on such navigation systems and concluded that online 
data has to be used carefully in traffic scenarios. In order to be 
able to measure and prove properties of traffic routing based on 
online data, we have defined the formal model of online joint 
resource utilization games and, as their specific version, the model 
of online routing games. To our knowledge, we are the first to 
define these models. These models are extensions of the models of 
routing games of the algorithmic game theory approach and the 
online mechanisms. Based on the formal model, we analyzed the 
simulation of a simple routing scenario in a Braess network and 
pointed out the different aspects of the benefit of online data, and 
defined three notions of the benefit of online data. We foresee 
different classes of online routing games, among them the class of 
simple naïve online routing games currently applied in 
commercial products. We proved that in the class of simple naïve 
online routing games stability is not guaranteed, so it makes sense 
to talk about worst, average and best benefit of online data. We 
proved that in simple naïve online routing games it may happen 
that a single flow enters the network and on some edge inside the 
network the flow is bigger than the one that entered the network. 
As a consequence we proved that the worst case benefit of online 
data may be bigger than one, i.e. it may be a “price”. These results 
are in line with previous simulation results, but now we have 
given formal proofs. 

With these advances we opened new research opportunities for 
important application fields and determined the main notions and 
characteristics that can become the basis to guide future research. 
We challenge future research to develop online routing game 
decision strategies that have worst case benefits of online data 
below one, or prove that it is not possible to develop such 
strategies. If such strategies are possible, then we expect that the 
application of these new strategies will be individually rational 
choice and therefore the decision strategies can be implemented in 
the navigation devices themselves instead of the centralized 
planning approaches like those of Google Maps and Waze, 
because some users are reluctant to provide private data for the 
centralized approach. 
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ABSTRACT
An important stage in traffic modeling and planning is traf-
fic assignment. For this, mainly an aggregate perspective
has been taken, in which zonal data is considered. In con-
trast, if individuals are considered as active and autonomous
agents, instead of having a central component assigning trips
to links, agents do their actual route choices. This disaggre-
gate perspective yields choices that are more heterogeneous
because there is no batch assignment. A consequence is that
the agents are able to distribute themselves in the network,
thus using it in a better way. In this paper, a disaggre-
gate, agent-based perspective is taken in which agents learn
to select routes by selecting links at each node of the net-
work, thus also addressing en-route changes in the known
routes. To illustrate this approach, a non-trivial network is
used and the results are compared to iterative methods that
approximate the user equilibrium.

1. INTRODUCTION
Traffic assignment is an important stage in the task of

modeling and simulating a transportation system. It con-
nects the physical infrastructure and the demand that is
going to use it, i.e., it assign trips to each link of the road
network. Thus it appears as one of the stages in the so-called
“four-stage models” of traffic modeling. Specifically, it is the
fourth stage, the previous three being: trip generation, trip
distribution, and modal split. The present paper deals with
that last stage, hence how trips are generated (a function
of attractiveness of certain zones of the network), their dis-
tribution (how many trips per zone), and modal split are
not addressed (in fact, this paper only deals with vehicular
traffic so that other modes are not relevant).

Classical methods for traffic modeling – including trip as-
signment – normally adopt an aggregate perspective, i.e.,
zone-based instead of individual-based. The reason is that
it is simpler to get zonal data (how many trips originate or
terminate there) than individual data, which may also in-
clude which intermediate activities each road user does dur-
ing the trip, which knowledge it has, as well as its preferences
for routes. Aggregate modeling assumes a centralized entity
that controls those four stages. Hence, trips are generated,
distributed, split, and assigned. In contrast, in a disaggregate

perspective, one talks about trip choice, destination choice,
mode choice, and route choice, in opposition to generation,
distribution, split, and assignment respectively.

The disaggregate perspective naturally fits an agent-based
approach and it is the one followed here. In it, agents do
the actual choice (instead of being told which trip to make,
which destination to go, etc.). Specifically, for the assign-
ment stage, this means that each agent will choose its route
based on local, partial knowledge. This may look trivial but
makes a difference in terms of which knowledge must be
available when one decides for an aggregate versus disaggre-
gate approach. Moreover, it also means that the choices are
as heterogeneous as possible. Ultimately, each agent can de-
cide which route to take based on its individual behavioral
rule. As this is a very complex approach (it is questionable if
such behaviors can be collected at all, at least with the kind
of technology and sensors that we have at this stage), the
perspective in the present paper is that agents are hetero-
geneous only regarding the information they have, but not
yet regarding completely heterogeneous behavioral rules. Of
course, an intermediate situation could be that classes of
agents with different behavioral rules could be modeled, as
in discrete choice modeling [5]. However, since even this
kind of data is not always available (e.g., how many percent
of the agents are greedy, etc.), this paper assumes an homo-
geneous population w.r.t. behavior. Also, having classes of
agent in the model would mean that this should be validated
against some real-world situation for which the data is not
available.

As mentioned, this paper takes an agent-based, disaggre-
gate perspective for trip assignment. The selection of route
is made by each agent, based on a reinforcement learning
(RL) method. This means that agents have knowledge about
the travel time for the shortest path between their origins
and destinations, given an uncongested state of the network.
However, they may explore other alternatives as well. Given
that congestion may arise, this exploration is likely to make
they exploit other routes. With this, a huge number of com-
binations of route or link choices arise in some links. The
problem is not only complex due to this fact, but also be-
cause each agent is trying to learn in this environment. This
is a multiagent learning problem, for which we know there
is no guarantee of convergence to the optimum choice of the
users. This user equilibrium can be found only for very sim-
ple networks, and they consider aggregate flows. Section 2
discusses this and approximate methods. However, they are
not efficient and cannot handle fully individual choices, thus
they miss a significant portion of the space of combinations
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of route or link choices, eventually missing the optimal solu-
tion. Furthermore, classical methods do not handle en-route
replanning, i.e., changes in the initially planned route during
the actual trip.

In short, in this paper it is argued that a RL-based method
at individual agent level, though not guaranteed finds the
optimum solution for the trip assignment, has advantages
over some classical methods. Perhaps the most important is
that it allows a higher degree of heterogeneity in the choices
of routes, without assuming a central authority that has
global information, as it is the case with some classical trip
assignment methods. The consequences of this is a better
distribution of the road users in the road network. To il-
lustrate this, the present paper uses a non-trivial scenario,
in which some links are highly attractive to all agents, but
produce severe congestion if all of them use those links in
their trips.

This problem has not been adequately addressed in the
literature. The traffic engineering literature mainly takes the
aggregate perspective (see Section 2). When dealing with
disaggregate modeling, it is not individual-based in the sense
that each individual can make its own choice on link basis,
as in the present paper. Rather, portions of the individuals
make the same decision about which route to use. A coarse
discretization has severe implications as discussed later. In
the autonomous agents and multiagent systems literature,
scenarios dealing with more than two or three routes, and
those in which agents can change their routes on the fly are
just beginning to be investigated. It is unclear what happens
when drivers can adapt to traffic patterns in complex traffic
networks. From the point of view of the whole system, the
goal is to ensure reasonable travel times for all users, which
can be conflicting with some individual utilities. Some of
these works are discussed in Section 3.

Apart from background concepts, methods, and related
work on trip assignment, which are discussed in the next
two sections, Section 4 describes the proposed approach and
the scenario used to illustrate it. Results are shown and an-
alyzed in Section 5, while Section 6 presents the concluding
remarks and points to future research.

2. TRAFFIC ASSIGNMENT METHODS
In this section, basic concepts about traffic (or trip) as-

signment methods are given. For an extensive explanation,
please refer to Chapter 10 in [12] or to Chapter 4 in [3].

A road network can be represented as a graph G = (V,E),
where V is the set of vertices that represent the intersections
of the network, and E is a set of directed arcs, describing
the existing road segments as directed connections between
pairs of vertices. Each link lk ∈ L has a cost ck, which
is given by a function that takes as input attributes such
as length, toll, free-flow speed (and hence, free-flow travel
time), capacity, current volume, etc. A route rp is defined
by a set of connected nodes (n0, n1, n2, ...). The length of
each rp is the sum of the lengths of all links lk that connect
these nodes.

Another relevant concept that needs to be introduced here
is the one of volume-delay functions (VDFs) or cost-flow re-
lationship. These are used in macroscopic modeling and aim
at accounting for congestion effects, i.e., how over-capacity
of a given volume or flow in a link affects the speed and
travel times (costs of delays). These functions account for
the flows in the whole network, i.e., they consider the in-

teractions between flows that use the network at the same
time, and the corresponding delays that may occur. As a
simple example of a VDF, one can consider the following:
tk = tk0 + 0.02 × qk. Here, tk is the travel time on link k,
tk0 is the travel time per unit of time under free flow con-
ditions, and qk is the flow using link k. This means that
the travel time in each link increases by 0.02 of a minute for
each vehicle/hour of flow.

Given a demand Tij for trips between origin i and desti-
nation j, there are several schemes to assign these trips to
the links of a road network. Such schemes can be classi-
fied over two main dimensions: (1) are capacity constraints
included?, and (2) are stochastic effects included? The clas-
sical scheme for situations in which there are no congestion
effects and no stochasticity in route choices is the all-or-
nothing scheme (discussed later). Stochasticity is handled
by simulation-based methods. Assignment under congestion
is of course a hot research topic and many approaches exist
in this category. If one ignores the stochastic effects and fo-
cus on capacity constraints, the aforementioned concept of
VDFs play a major role. For example, given VDFs for each
link in the network, a goal of these approaches is to approx-
imate the equilibrium conditions as stated by Wardrop [19]:
“under equilibrium conditions traffic arranges itself in con-
gested networks such that all used routes between an OD
pair have equal and minimum costs while all those routes
that were not used have greater or equal costs”. This is
Wardrop’s first principle, also known as Wardrop’s equilib-
rium or user equilibrium.

Thus, given a traffic network, the assignment from the
point of view of the user equilibrium can be analytically
stated as an optimization problem: find all flows from each
OD pair s.t. only paths with minimal costs have a nonzero
flow assigned to them, which corresponds to Wardrop’s first
principle. For a mathematical formulation of this problem,
the reader is referred to Chapter 2 in [7], as well as to [14].

One problem with this scheme is that it is not possible
to solve the equilibrium flows algebraically, except for very
simple cases (e.g., two or three links connecting a single OD
pair). Thus, approximate solutions to the Wardrop’s equi-
librium were proposed. To evaluate their quality, relevant
issues are solution stability and convergence, as well as com-
putational requirements.

Such approximate solutions are discussed later in this sec-
tion. Before, it is important to introduce a general proce-
dure that underlies any of the assignment schemes. Indeed,
each assignment scheme discussed before has several steps
that must be treated in turn: (i) to identify a set of routes
that might be considered attractive to drivers; (ii) to assign
suitable proportions of the trip matrix to these routes; this
results in flows on the links of the network; (iii) to search
for convergence: many techniques follow an iterative pat-
tern of successive approximations to an ideal solution (e.g.,
Wardrop’s equilibrium).

The first step can be accomplished with any variant of
the Dijkstra algorithm for shortest paths. This step is also
known as tree-building step. However, normally these paths
are generated based on a first-approximation or an estimated
cost function (e.g., one that considers no congestion, i.e.,
only free-flow travel times are considered) because the real
cost is not known, given that it depends on the route choices
of all users. Therefore, in a non-free-flow regime (i.e., under
congestion), the second aforementioned step must be per-
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formed iteratively, until some sort of convergence is reached.
Next, some classical trip assignment approaches are dis-

cussed. The typical approach to trip assignment under no
congestion is to assign all trips to the route with minimum
cost, on the basis that these are the routes travelers would
rationally select. That is as in Eq. 1, where Tij is the given
demand between origin i and destination j. This procedure
is referred as ”all-or-nothing” assignment. It is possible to
see that this scheme assigns all trips between nodes i and
j to the same links (because, as mentioned, this scheme as-
sumes no congestion).

Tijr? = Tij for the minimum cost route r?

Tijr = 0 for all other routes

}
∀i,j (1)

For route assignment under congestion (i.e., the capac-
ity of a link k can be surpassed and, as such, a VDF is
necessary to account for the effects of the over-capacity),
mainly two iterative methods can be used. The first is to
load the network incrementally in n stages, e.g., assigning
a given fraction pn (e.g., 10%, 20%, etc.) of the total de-
mand (for each OD pair) at each stage. Further fractions are
then assigned based on the newly computed link costs. This
procedure continues until 100% of the demand is assigned.
Typical values for fractions pn are 0.4, 0.3, 0.2, and 0.1. An
algorithm for this is the following (adapted from [12]):

1. select an initial set of current link costs (usually the
free-flow travel times); initialize flows at all links k:
Vk = 0; select a fraction pn of the trip matrix T such
that

∑
n pn = 1; make n = 0.

2. build the set of minimum cost trees (one for each ori-
gin) using the current costs; n← n+ 1.

3. load Tn = pnT all-or-nothing trips to these trees, ob-
taining a set of auxiliary flows Fk; accumulate flows on
each link: V n

k = V n−1
k + Fk.

4. calculate a new set of current link costs based on flows
V n
k ; if not all fractions of T have been assigned, pro-

ceed to step 2.

It must be remarked that there is no guarantee that this al-
gorithm converges to the Wardrop’s equilibrium, no matter
how small each pn is. This procedure has the drawback that
once a flow has been assigned to a link, due to the accu-
mulated nature (see step 3), it is never removed. Thus, in
case an arbitrarily low over-capacity is assigned to a link,
then it prevents the convergence to the optimum solution.
However, it is very easy to program.

The other approach is to start from some initial values for
the link costs and find the minimum cost routes. Trips are
then assigned to these routes. New costs are computed and
this cycle is repeated until there is no significant change in
link or route volumes. For instance, in the method of suc-
cessive averages, the flow at the n-th iteration is calculated
as a linear combination of the flow on the previous itera-
tion and an auxiliary flow resulting from an all-or-nothing
assignment in the n-th iteration. This can be formalized as
the following procedure (again, adapted from [12]):

1. select an initial set of current link costs (usually the
free-flow travel times); initialize flows at all links k:
Vk = 0; make n = 0.

2. build the set of minimum cost trees (one for each ori-
gin) using the current costs; n← n+ 1.

3. load the whole of the matrix T all-or-nothing to these
trees obtaining a set of auxiliary flows Fk.

4. calculate the current flows as: V n
k ← (1 − φ)V n−1

k +
φFk, with 0 ≤ φ ≤ 1.

5. calculate a new set of current link costs based on V n
k ;

if no V n
k has changed significantly in two consecutive

iterations, stop; otherwise proceed to step 2 (or, alter-
natively, use a maximum number of iteration).

The last step of the method admits several ways to fix
the value of φ. A useful one is to make φ = 1/n. There
is a proof that this produces solutions convergent to the
Wardrop’s equilibrium but this may be very inefficient.

Note that both iterative methods to approximate Wardrop’s
equilibrium are based on the all-or-nothing scheme (applied
in each iteration). Thus, even for fine discretization levels,
a number of trips is assigned to the same links.

3. RELATED WORK
A number of works from transportation planning and eco-

nomics, as well as from mathematics and operations re-
search, physics, and computer science deal with this prob-
lem. Computer science plays a role when it comes to solving
large-scale road network problems. The most relevant and
close to the approach proposed here are discussed next.

In [11], the author makes the point that trip assignment
schemes that are based on steady-state flow conditions of
the road network are adequate only for analysis of long-
term strategic planning horizons, but not for tactical mea-
sures that are of interest in applications around intelligent
transportation systems. However, the author also recog-
nizes the challenges of finding an analytic representation
that satisfies the laws of physics and traffic sciences, while
also being mathematically tractable. Therefore they pro-
pose a simulation-based approach for the dynamical traffic
assignment (DTA) problem. In DTA one goal is to describe
how flows develop not only spatially but also temporally
in the network. This means that DTA considers road users
that depart from an origin to a destination at different times.
Hence, they experience different travel times and, as such,
the user equilibrium condition applies only to travelers who
are assumed to depart at the same time between the same
OD pair. In the present work, departure at different times
is not considered, but the approach is not purely simulation-
based given that the agents learn by interacting with the en-
vironment. DTA is also the focus of [16] in which the authors
propose a predictive DTA model, also based on simulation
and combined with the method of successive averages. Henn
([8]) proposes a fuzzy-based method to take the imprecisions
and the uncertainties of the road users into account. These
predict costs for each path based on a fuzzy subset that
can represent imprecision on network knowledge, as well as
uncertainty on traffic conditions.

As mentioned, a natural way to represent the problem of
route choice (in opposition to trip assignment) is to model
it using an agent-based modeling and simulation approach.
Hence, there has been some works in this direction. An
example is MATSim [1, 2], which deals with activity-based
simulation of route choice.
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Route choice under various levels of information is turning
a hot research topic due to the increasing use of navigation
devices. Agent-based route choice simulation has been ap-
plied to research concerning the effects of intelligent traveler
information systems. Main questions here are what hap-
pens to the overall demand, if a certain share of drivers is
informed and adapt. What kind of information is the best
one to be given? Examples for such research line can be
found in [9] for a two-route scenario, or in [6] where a neural
net-based agent model for route choice is presented regard-
ing a three route scenario. In [13], a simple network for
fuzzy-rule based routing (including qualitative decisions) is
used.

One problem with these approaches is that their appli-
cation in networks with more than a couple of routes be-
tween a few locations is not trivial. The first problem is
that a set of reasonable route alternatives has to be gener-
ated. A n-shortest path algorithm can be used but it may
output routes that differ only marginally. Additionally, all
approaches, including agent-based ones, consider one route
as one complete option to choose. On-the-fly re-routing has
hardly been a topic for research. Even more sophisticated
agent architectures such as the one proposed by [15] do not
include the possibility of re-routing during the trip.

To address this issue, re-routing in a scenario with multi-
ple origins and destinations was studied in [4]. Besides route
choice by the driver agents, the authors also consider traf-
fic lights as adaptive agents in order to test whether such a
form of co-adaptation may result in interferences or positive
cumulative effects. This was one of the first works in the
agent-based community that has dealt with agents comput-
ing new routes on the fly. This is important because en-route
modifications cannot be ignored in a realistic simulation of
decision making in traffic. An abstract route choice scenario
was used, having some features of real world networks. How-
ever, in this work no comparison is made to methods that
approximate the user equilibrium thus, it is not possible to
fully assess the quality of those results.

Degradation in performance caused by the selfish behavior
of individual road users remains an important research topic.
[10] have proposed the so-called price of anarchy to measure
this degradation. They show results for small networks such
as the one used to illustrate the Braess paradox.

A learning-based approach was used by [17] where agents
learn to select routes; thus there is no en-route changes in
the routes. The size and topology of the network is not
mentioned but it seems to be a single origin and destination.

4. APPROACH AND CASE STUDY
One of the problems with the methods discussed in Sec-

tion 2 is that the set of routes that are considered in each
step of the iterative process is reduced in order to gain in
terms of computing time. However, this set can be far from
the set that would be used by real world drivers, even if con-
sidering their informational constraints regarding the status
of the traffic at the moment they make decisions. In other
words, the granularity of the route selections is very coarse.

The approach proposed here can handle much finer gran-
ularities; actually, there is no limitation or restriction on
the number and kinds of routes that users can select. This
means that all possible routes can be combined (one for each
agent), contrarily to schemes discussed in Section 2. This
occurs because the granularity of those schemes is coarse per

se. For example, the all-or-nothing approach is the extreme
case where the whole volume for each OD pair is assigned to
the same route. However, even less coarse methods as for in-
stance the incremental method, still assigns the same route
to a given fraction of road users. Of course these fractions
can be small but the efficiency of this method decreases with
the discretization (number of incremental steps). Similarly,
in the successive averages method, the computational cost
of the method depends on a good choice of the parameter φ.
If it is a function of the parameter n (see Section 2), then
the efficiency may be compromised.

In the iterative methods it is not possible to actually as-
sign a different route to each road user at each iteration, as
the method proposed here does. For this, this method pays
a cost (more iterations are necessary as agents are learning
while selecting routes) but it is still a tractable method given
that each iteration typically takes just a few minutes. As it
will be discussed further, the proposed method and the iter-
ative methods present basically similar running times, but
the former is heterogeneous in terms of combinations of in-
dividual route choices, thus exploring the possible search
space in ways that are not possible with the iterative meth-
ods (without incurring in much higher running times).

The approach proposed here is based on RL. Agents learn
the value of their actions by interacting with an environ-
ment that gives a feedback signal to each agent, based on
which state the agent is in, and the action this agent de-
cides to make while in that state. RL problems can be
modeled as Markov decision processes (MDPs). An expe-
rience tuple 〈s, a, s′, r〉 denotes the fact that the agent was
in state s, performed action a and ended up in s′ with re-
ward r. Here, a popular model-free algorithm for RL is used,
namely Q-learning. The update rule for each experience tu-
ple 〈s, a, s′, r〉 is given in Equation 2, where α is the learning
rate and γ is the discount for future rewards.

Q(s, a)← Q(s, a)+α
(
r + γ maxa′ Q(s′, a′)−Q(s, a)

)
(2)

Considering a high number of agents in multi-agent RL turns
the problem inherently more complex. This complexity has
many causes and consequences, one being that mathematical
convergence guarantees no longer hold.

The learning agents are the road users; the environment is
a road network, where nodes form the set of states an agent
may be, and the links departing from each node form the set
of actions an agent may take. Each agent has an origin and
a destination. Routes connecting these two are represented
as a set of consecutive nodes. Of course there are many ways
in which a destination node can be reached. Because links
have a travel time that depends on the number of agents
using them in their route choices, this problem is complex.
Mostly, the desirable, shortest path under free-flow, may end
up producing a high travel time if too many agents want to
use it. Agents then need to learn how go from their origins
to their destinations by finding routes that allows them to
distribute themselves in such a way that the optimal number
of agents use each link, minimizing their travel times.

In order to address a non trivial network, the one sug-
gested in [12] (Exercise 10.1) is used, as depicted in Figure 1.
All links are two-way. This network represents two residen-
tial areas (nodes A and B) and two major shopping areas
(nodes L and M). The numbers in the links are their travel
times under free flow (in both ways). These also appear in
the second column of Table 3. For the shortest path algo-
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Table 1: Shortest Paths and Free-Flow Travel Times
(FFTT) for the Four OD Pairs (original and modi-
fied networks).

OD original modified
pair sh.st path FFTT sh.st path FFTT
AL ACGJIL 28 ACDGJIL 23
AM ACDHKM 26 ACDGJKM 23
BL BDGJIL 32 BDGJIL 22
BM BEHKM 23 BDGJKM 22

rithms, these can be seen as their costs so henceforth both
terms are used indistinctly.

Further, in order to make the assignment more complex,
two modifications in the fixed costs were made: to make
an arterial more attractive to all road users (and hence the
learning effort more difficult as there is more competition for
cheap resources), the fixed costs of links DG and GJ (and
their opposite directions as well) were reduced from, respec-
tively, 7 and 3 to zero. These modifications are indicated in
Table 3 by shadowed cells. This way the shortest paths, for
each OD pair, and their travel times (under free-flow) are
shown in Table 1, both for the original network and for the
modified network. Note that the proposed approach (as well
as the iterative methods) were run for both the original and
for the modified versions but since the latter is more chal-
lenging, only results steaming from the experiments using
the latter are mentioned. Notice, however, that the general
conclusions are valid for both, i.e., the RL-based approach
outperforms the other methods. Henceforth this network is
referred as OW network.

In the experiments, 1700 driver agents were used as this
is the proposed demand for the OW network during a Sat-
urday morning peak (see exercise 10.1 in the book) and an
estimated demand from A and B to L and M as depicted in
Table 2. Further, the exercise proposes a VDF that relates
cost c(qk) at link k to its flow qk. Specifically, it is proposed
that the travel time in each link is increased by 0.02 for each
vehicle/hour of flow (tk = tk0 + 0.02 × qk, as discussed in
Section 2).

This simple scenario goes far beyond simple two-route (bi-
nary) choice scenario. It captures properties of real-world
scenarios, like interdependence of routes with shared links
and heterogeneous capacities and demand throughout the
complete network. Moreover, the number of possible routes
between two locations is high and/or it may involve loops
as links are two-way, and it has more than a single OD pair.
Hence, it is hardly possible to compute the Wardrop’s equi-
librium algebraically.

Figure 1: Original Road Network (as proposed by
Ortuzar and Willumsen)

Table 2: Average Travel Time per OD Pair: itera-
tive methods

OD Pair Trips Incremental Succ. Avgs.
AL 600 69.00 68.04
AM 400 63.00 62.58
BL 300 69.60 64.50
BM 400 63.00 58.42

1700 66.28 63.87

5. EXPERIMENTS AND RESULTS
Experiments were conducted using both the iterative meth-

ods discussed in Section 2, and the RL-based approach pro-
posed here. As mentioned, the main aim is to show that a
disaggregate, decentralized, agent-based approach in which
agents learn by interacting with the environment, is able to
find solutions that have at least the same travel times as the
iterative methods, with little computational effort. More-
over, it is possible to show that the routes selected using the
proposed approach are sometimes different from those found
by the centralized, iterative approaches used as comparison.
The fact that the RL-based approach was able to find lower
travel times shows that the routes found by the iterative
approaches could still be improved if more iterations were
used, but this is unlikely to happen due to the coarse nature
of discretization that underlies these methods.

Results for incremental and successive averages methods
steam from the implementation of these algorithms provided
by the publisher of Ortuzar and Willumsen’s book. The
shortest paths under free-flow (Table 1) were found alge-
braically. For the RL-based approach, simulations results
reported here are averaged over 10 repetitions (for each con-
dition). To render some tables cleaner, standard deviations
are not always shown but they are of the order of 5% at
most. Running times are in the order of few seconds for
the iterative methods. For the RL-based approach, running
times greatly depend on the number of episodes and on the
value of the discount rate γ. For the cases shown next, sim-
ulations take at most a few minutes. Note however that
the number of episodes can be greatly reduced, as indicated
in the plots. Experiments were run in a standard PC (8
GB RAM), running Linux (for the RL-based approach) and
Windows XP (for the algorithms provided by Ortuzar and
Willumsen).

For evaluation, the performance measure is the same used
in [12]: travel times averaged over all agents and also for each
OD pair. Also, the number of trips using each link is shown,
highlighting some differences found among the methods.

5.1 Results from Iterative Methods
Results for the iterative methods discussed before are shown

in Tables 2 and 3; these were obtained using pn = 0.4, 0.3, 0.2, 0.1
for the incremental method, and φ = 1/n and 100 iterations
as stop criterion.

In Table 3, it is possible to see that both methods yield
very different values for some links. Take links CD, JI, JK,
JM, GK, KJ, DG, AD and BA as examples. Later, these
numbers can be compared to the RL-based approach.

Table 2 summarizes the average travel times per OD pair
for both methods, as well as the average travel times over
all trips.
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Table 3: Travel Time Each Link: incremental and
successive average methods.

Fixed Incremental Succ. Avg.s
Link Cost Flow Cost Flow Cost
AB 7 0 7 4 7.08
AC 5 800 21 655 18.10
AD 15 200 19 348 21.96
BA 7 0 7 7 7.14
BD 11 370 18.40 374 18.48
BE 11 330 17.60 323 17.46
CA 5 0 5 0 5
CD 7 400 15 10 7.20
CF 11 240 15.80 372 18.44
CG 9 160 12.20 276 14.52
DA 15 0 15 0 15
DB 11 0 11 0 11
DC 7 0 7 3 7.06
DE 7 0 7 0 7
DG 0 770 15.40 551 11.02
DH 9 200 13 178 12.56
EB 11 0 11 0 11
ED 7 0 7 0 7
EH 7 330 13.60 323 13.46
FC 11 0 11 0 11
FG 9 0 9 0 9
FI 13 240 17.80 375 20.50
GC 9 0 9 0 9
GD 0 0 0 0 0
GF 9 0 9 3 9.06
GH 9 0 9 0 9
GJ 0 890 17.80 700 14
GK 13 40 13.80 124 15.48
HD 9 0 9 0 9
HE 7 0 7 0 7
HG 9 0 9 0 9
HK 3 530 13.60 501 13.02
IF 13 0 13 0 13
IJ 9 0 9 0 9
IL 2 600 14 450 11
JG 0 0 0 0 0
JI 9 360 16.20 75 10.50
JL 12 300 18 450 21
JK 9 320 15.40 8 9.16
JM 12 0 12 176 15.52
KG 13 0 13 0 13
KH 3 0 3 0 3
KJ 9 90 10.80 9 9.18
KM 2 800 18 624 14.48
LI 2 0 2 0 2
LJ 12 0 12 0 12
MJ 12 0 12 0 12
MK 2 0 2 0 2

sum 543.4 522.38

5.2 Results of the RL based Approach
The approach presented in Section 4 has some parameters

that refer basically to the Q-learning. These are the learn-
ing rate α, the discount rate γ, and the exploration rate ε.
In the present paper, ε starts at ε0 = 1 and is multiplied
by a factor of 0.995 at each episode in order to allow agents

to explore the environment for a certain time. The value of
this multiplicative factor must be set to fit the simulation
horizon. As a general rule, 1000 episodes were run, so that
that after 1000 episodes ε ≈ 10−3. Notice that not all com-
binations of values for α and γ require 1000 episodes. In
some cases convergence to a given route choice pattern is
reached much earlier, but for uniformity, the same number
of episodes (1000) was used in all cases.

Next the results obtained when this approach was em-
ployed in the OW network are presented. Tables 4 and 5
show different measures that are of interest. First, Table 4
shows the average travel time over all 1700 trips, at the last
episode, for different combinations of values for α and γ. To
render it more clear, standard deviations are omitted and
the numbers were rounded to integers. It is clear that the
discount factor γ plays a major role in the learning, while
the learning rate α is less selective. This can be explained by
the fact that choices that can be made at states that can be
reached from a given state, are very important in this prob-
lem since the agent is trying to make a series of decisions in
order to minimize travel time at the whole route. Therefore
the discount rate must be high. It needs to be remarked
that, in some cases, the number of trips over these links are
much higher than the number of users. This is due to the
fact that loops are possible and some users perform these
loops. This is mainly the case when the discount rate is low
and agents do not consider the future.

If one takes travel times given in Table 4, for different
values of α and for the highest value of γ, it is is possible
to see that these values (between 51 and 52) are lower than
those shown in the last line of Table 2. Thus the RL-based
approach yields travel times that are lower than the itera-
tive methods, with roughly the same order of running times.
Moreover, and perhaps more interesting, the choice made
by the agents is based purely on local knowledge, whereas
the iterative methods assume global knowledge of the links’
costs.

Apart from values averaged over all links, it is interesting
to check what happens in each link. As remarked before,
the number of trips using some links differ much in the in-
cremental and in the successive averages methods. Thus, a
direct comparison with the RL-based approach is interest-
ing. Table 5 shows the number of trips in selected links (to
facilitate the comparison, numbers for the iterative methods
were copied from Table 3), for α = 0.5 and γ = 0.99. The
criterion for inclusion in this table was that either the re-
sult achieved by the RL-based approach was different from
both iterative methods, or it is close to one of these while
these differ among them. For instance, for the link JM, the
incremental and successive average methods assign zero and
176 trips respectively. The RL-based approach assigns 185
trips (with standard deviation – given the 10 runs – of about
8), thus being closer than the value obtained using the suc-
cessive averages method. For cases in which the method
proposed here differs from both, take for instance links AB
and BA.

In this paper, an important point is that this difference,
far from being bad, is what makes the RL-based approach
more efficient. Links AB and BA were barely used in the
trips assigned using the iterative methods. However, the
learning agents found out that they can distribute them-
selves in ways that use the resources (links) in more efficient
ways.

Proceedings of 8th International Workshop on Agents in Traffic and Transportation ATT 2014

101



Table 4: Average Travel Time (over all 1700 trips)
γ α

0.1 0.3 0.5 0.7 0.9
0.99 52 52 51 51 51
0.8 50 50 50 50 50
0.6 58 56 55 55 57
0.5 84 80 81 76 80
0.4 114 111 100 102 107
0.2 329 225 183 152 181

Table 5: Number of Trips Over Selected Links, for
α = 0.5 and γ = 0.99

RL-based:
Link Incremental Succ. Avg.s Avg. (Std. Dev.)
AB 0 4 213 (8)
BA 0 7 168 (4)
CD 400 10 103 (5)
JM 0 176 185 (8)
KJ 90 9 5 (1)

That travel times were efficient at user level was already
discussed. A final comparison that can be made regards the
sum of all costs, a measure of how efficient the method is at
global level. The last line of Table 3 shows that the sum of
costs over all links is over 500 for both iterative methods.
When this sum is made considering the costs of links re-
sulting from the RL-based approach, this value reaches only
462.94, with standard deviation of 0.22.

So far tables have shown the results of the assignment af-
ter 1000 learning episodes. The inset plot in Figure 2 depicts
how the sum of links’ costs change along time. The main
plot shows how the number of trips changes with time, for
three selected links: AB, BA and CD. These were selected
because they show the greatest variation regarding the iter-
ative methods, as shown in Table 5. Note that for α = 0.5
and γ = 0.99, it would not be necessary to run 1000 episodes
to reach convergence.

Figure 2: Performance x time: sum of costs over all
links (inset) and number of agents in selected links.

6. CONCLUSIONS AND FUTURE WORK
Traffic assignment is an important step in modeling a

transportation system. Classical approaches assume some
degree of centralization, in which trips are assigned to links
or routes. In this paper the perspective of the road user is
taken: these users are modeled as agents that autonomously
select their routes in an adaptive way. A similar perspective
is taken in simulation-based works mentioned in Section 3,
but there are two main differences to the present paper.
First, here, agents do not anticipate traffic states (e.g., us-
ing fuzzy sets) but rather learn these states while interacting
with the environment. This is a hard multiagent learning
problem given the number of agents (here, thousands) try-
ing to learn simultaneously in a competitive environment
(links are shared by many agents). Second, agents form
their routes while taking actions at nodes of the network,
thus addressing the issue of en-route planning (as this task
is known in traffic engineering, even if it is not a planning
task from the AI point of view). In most previous simula-
tion scenarios route adaptation was only allowed before and
after the actual driving.

Results are twofold. First, the routes that are learned
using the proposed approach are sometimes different from
those found by the centralized, iterative approaches used as
comparison. Second, the learning-based approach is more
efficient than the iterative methods: exactly because the
agents distribute themselves in different ways in the links
of the road network (as compared to these approaches), the
overall travel time is approximately 15% less than when it-
erative methods are used to assign trips to links. Also, the
average travel time is lower for each of the OD pairs. This
suggests that there is room for further improvements when
the iterative methods are used. However, only few works re-
ported in the literature show how far their results are from
the optimum (only those dealing with simple networks).

A future direction of this work is to investigate the math-
ematical properties of the mathematical properties of the
multiagent learning approach in order to provide insights
about the bound to the optimum assignment. As this is a
complex problem, one possibility is to use domain-dependent
knowledge and/or properties of the domain. Also, a kind of
reward shaping scheme as proposed in [18] can prove useful.
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ABSTRACT
The paper introduces an agent-based model for the simu-
lation of crowds of pedestrians whose main innovative ele-
ment is the representation and management of an important
type of social interaction among the pedestrians: members
of groups, in fact, carry out of a form of interaction (by
means of verbal or non-verbal communication) that allows
them to preserve the cohesion of the group even in partic-
ular conditions, such as counter flows, presence of obstacles
or narrow passages. The paper formally describes the model
and presents its application to a real world scenario in which
an analysis of the impact of groups on the overall observed
system dynamics was performed. The simulation results are
compared to empirical data and they show that the intro-
duced model is able to produce quantitatively plausible re-
sults in situations characterised by the presence of groups of
pedestrians.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Applications

General Terms
Experimentation

Keywords
pedestrian and crowd modeling, interdisciplinary approaches

1. INTRODUCTION
The simulation of pedestrians and crowds is a consolidated

and successful application of research results in the more
general area of computer simulation of complex systems.
Relevant contributions to this area come from disciplines
ranging from physics and applied mathematics to computer
science, often influenced by anthropological, psychological,
sociological studies. The quality of the results provided by
simulation models was sufficient to lead to the design and
development of commercial software packages, offering use-
ful functionalities to the end user (e.g. CAD integration,
CAD-like functionalities, advanced visualisation and anal-

ysis tools) in addition to a simulation engine1. Pedestrian
models can be roughly classified into three main categories
that respectively consider pedestrians as particles subject to
forces, particular states of cells in which the environment is
subdivided in Cellular Automata (CA) approaches, or au-
tonomous agents acting and interacting in an environment.
The most widely adopted particle based approach is repre-
sented by the social force model [9], which implicitly em-
ploys fundamental proxemic concepts like the tendency of
a pedestrian to stay away from other ones while moving
towards his/her goal. Cellular Automata based approaches
have also been successfully applied in this context: in partic-
ular, the floor-field model [5], in which the cells are endowed
with a discretised gradient guiding pedestrians towards po-
tential destinations. Finally, works like [10] essentially ex-
tend CA approaches, separating the pedestrians from the
environment and granting them a behavioural specification
that is generally more complex than what is generally rep-
resented in terms of a simple CA transition rule, but they
essentially adopt similar methodologies. The resulting mod-
els are agent–based, since pedestrians are not merely states
of cell. Relevant recent innovative studies employing agent-
based approaches regard higher level aspects of pedestrian
behaviour, like social aspects and the transfer of emotions
in crowds (see, e.g., [4]) and they are not necessarily related
to a discrete spatial representation of the simulated environ-
ment.

A recent survey of the field by [18] and by a report com-
missioned by the Cabinet Office by [6] made clear that, even
after the substantial research that has been carried out in
this area, there is still much room for innovations in models
improving their performances both in terms of effectiveness
in modelling pedestrians and crowd phenomena, in terms
of expressiveness of the models (i.e. simplifying the mod-
elling activity or introducing the possibility of representing
phenomena that were still not considered by existing ap-
proaches), and in terms of efficiency of the simulation tools.
Research on models able to represent and manage phenom-
ena still not considered or properly managed is thus still
lively and important. One of the aspects of crowds of pedes-
trians that has only been recently considered is represented
by the implications of the presence of groups. A small num-
ber of recent works represent a relevant effort towards the
modeling of groups, respectively in particle-based [15] (ex-
tending the social force model), in CA-based [17] (with ad-
hoc approaches) and in agent-based approaches [16] (intro-

1See http://www.evacmod.net/?q=node/5 for a large list
of pedestrian simulation models and tools.
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ducing specific behavioral rules for managing group oriented
behaviors): in all these approaches, groups are modeled by
means of additional contributions to the overall pedestrian
behaviour representing the tendency to stay close to other
group members. However, the above approaches only mostly
deal with small groups in relatively low density conditions;
those dealing with relatively large groups (tens of pedestri-
ans) were not validated against real data. The last point is
a crucial and critical element of this kind of research effort:
computational models represent a way to formally and pre-
cisely define a computable form of theory of pedestrian and
crowd dynamics. However, these theories must be validated
employing field data, acquired by means of experiments and
observations of the modeled phenomena, before the models
can actually be used for sake of prediction. This paper rep-
resents a step in this direction, since it reports the results of
a field observation and analysis of pedestrian and group be-
haviour (in the following section) then it introduces a model
for pedestrian simulation encompassing an adaptive model
for the preservation of group cohesion (Sect. 3) that is finally
applied in a virtual counterpart of the observed scenario.
Results of this simulation campaign are discussed in Sect. 4.
Conclusions and future developments end the paper.

2. FIELD DATA ABOUT GROUPS
This Section comprises several empirical studies aimed at

investigating pedestrian crowd dynamics in the natural con-
text by using on-field observation. In particular the survey
was aimed at studying the impact of grouping and proxemics
behaviour on the whole crowd pedestrian dynamics. Data
analyses were focused on: (i) level of density and service,
(ii) presence of groups within the pedestrian flows, (iii) tra-
jectories and walking speed of both singles and group mem-
bers. Furthermore the spatial dispersion of group members
while walking was measured in order to propose an inno-
vative empirical contribution for a detailed description of
group proxemics dynamics while walking.

The survey was performed the last 24th of November 2012
from about 2:50 pm to 4:10 pm. It consisted in the observa-
tion of the bidirectional pedestrian flows within the Vittorio
Emanuele II gallery, a popular commercial-touristic walk-
way situated in the Milan city centre (Italy). The gallery
was chosen as a crowded urban scenario, given the large
amount of people that pass through it during the weekend
for shopping, entertainment and visiting touristic-historical
attractions in the centre of Milan.

The team performing the observation was composed of
four people. Several preliminary inspections were performed
to check the topographical features of the walkway. The bal-
cony of the gallery, that surrounds the inside volume of the
architecture from about ten meters in height, was chosen as
location thanks to possibility to (i) position the equipment
for video footages from a quasi-zenithal point of view and
(ii) to avoid as much as possible to influence the behaviour of
observed subjects, thanks to a railing of the balcony partly
hiding the observation equipment. The equipment consisted
of two professional full HD video cameras with tripods. The
existing legislation about privacy was consulted and com-
plied in order to exceed ethical issues about the privacy of
the people recorded within the pedestrian flows.

Two independent coders performed a manual data analy-
ses, in order to reduce errors by crosschecking their results.
A square portion of the walkway was considered for data

analysis: 12.8 meters wide and 12.8 meters long (163.84
square meters). In order to perform data analyses, the inner
space of the selected area was discretised in cells by super-
imposing a grid2 on the video (see Fig. 1); the grid was
composed of 1024 squares 0.4 meters wide and 0.4 meters
long. The video and the annotation data will soon be made
available only for research purposes through the web.

2.1 Level of Density and Service
The bidirectional pedestrian flows (from North to South

and vice versa) were manually counted minute by minute:
7773 people passed through the selected portion of the Vit-
torio Emanuale II Gallery from 2:50 pm to 4:08 pm. The
average level of density within the selected area (defined as
the quantitative relationship between a physical area and
the number of people who occupy it) was detected consider-
ing 78 snapshots of video footages, randomly selected with
a time interval of one minute. The observed average level of
density was low (0.22 people/squared meter). Despite it was
not possible to analyse continuous situations of high density,
several situation of irregular and local distribution of high
density were detected within the observed scenario.

According to the Highway Capacity Manual by [14], the
level of density in motion situation was more properly es-
timated taking into account the bidirectional walkway level
of service criteria: counting the number of people walking
through a certain unit of space (meter) in a certain unit
of time (minute). The average level of flow rate within
the observed walkway scenario belongs to a B level (7.78
ped/min/m) that is associated with an irregular flow in low-
medium density condition.

2.2 Flow Composition
The second stage of data analysis was focused on the de-

tection of groups within the pedestrian flows, the number of
group members and the group proxemics spatial arrange-
ment while walking. The identification of groups in the
streaming of passerby was assessed on the basis of verbal
and nonverbal communication among members: visual con-
tact, body orientation, gesticulation and spatial cohesion
among members. To more thoroughly evaluate all these in-
dicators the coder was actually encouraged to rewind the
video and take the necessary time to tell situations of sim-
ple local (in time an space) similar movements, due to the
contextual situation, by different pedestrians from actual
group situations. The whole video was sampled considering
one minute every five: a subset of 15 minutes was extracted
and 1645 pedestrians were counted (21.16% of the total bidi-
rectional flows). Concerning the flow composition, 15.81%
of the pedestrians arrived alone, while the 84.19% arrived in
groups: 43.65% of groups were couples, 17.14% triples and
23.40% larger groups (composed of four or five members).
Large structured groups, such as touristic committees, that
were present in the observed situation, were analysed con-
sidering sub-groups.

2The grid was designed using Photoshop CS5 (according to
the perspective of the video images). An alphanumeric code
was added on the sides of the grid. Finally, the grid with a
transparent background was superimposed to a black-white
version of the video images by means of iMovie. To perform
counting activities, the video was reproduced by using VLC
player thanks to its possibility to playback the images in
slow motion and/or frame by frame and to use an extension
time format that included hundredths of a second.
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Figure 1: From the left: an overview of the Vittorio Emanuele II gallery, the streaming of passerby within
the walkway and a snapshot of the recorded video images with the superimposed grid for data analysis

2.3 Trajectories and Walking Speed
The walking speed of both singles and group members

was measured considering the path and the time to reach
the ending point of their movement in the monitored area
(corresponding to the centre of the cell of the last row of the
grid) from the starting point (corresponding to the centre
cell of the first row of the grid). Only the time distribution
related to the B level of service was considered (as men-
tioned, the 59% of the whole video footages), in order to
focus on pedestrian dynamics in situation of irregular flow.
A sample of 122 people was randomly extracted: 30 singles,
15 couples, 10 triples and 8 groups of four members. The
estimated age of pedestrians was approximately between 15
and 70; groups with accompanied children were not taken
into account for data analyses. About gender, the sample
was composed of 63 males (56% of the total) and 59 females
(44% of the total). Differences in age and gender were not
considered in this study. The selected pedestrians were cho-
sen among those not stopping at shops’ windows or entering
shops, to actually focus on movement dynamics and not on
the choice of activities (like in the vein of [8]).

The alphanumeric grid was used to track the trajectories
of both single and group members within the walkway and to
measure the length of their path3 (considering the features
of the cells: 0.4 m wide, 0.4 m long).

A first analysis was devoted to the identification of the
length of the average walking path of singles (M=13.96 m,
±1.11), couples (M=13.39 m, ± 0.38), triples (M=13.34 m,
± 0.27) and groups of four members (M=13.16 m, ± 0.46).
Then, the two tailed t-test analyses were used to identify dif-
ferences in path among pedestrian. Results showed a signif-
icant difference in path length between: singles and couples
(p value<0.05), singles and triples (p value<0.05), singles

3To measure the walking path and speed we considered each
pedestrian as a point without mass in a two-dimensional
plane. By using the alphanumeric grid, we considered the
cell occupied by the feet of each pedestrian as its own actual
position. The starting and final steps were measured from
the half of the cell, consequently 0.2 m is the corresponding
length of the each related path; any diagonal step cell by cell
was measured as the diagonal between the two cells (0.56 m);
any straight step was measured as the segment between the
centre of two cells (0.4 m).

and groups of four members (p value<0.05). No significant
differences were detected between path length of couples
and triples (p value>0.05), triples and groups of four mem-
bers (p value>0.05), couples and groups of four members
(p value>0.05). The results showed that the path of singles
is 4,48% longer than the average path of group members
(including couples, triples and groups of four members).

The walking speed of both singles and group members
was detected considering the path of each pedestrian within
the flows and the time to reach the ending point from their
starting point. A first analysis was devoted to the identifica-
tion of the average walking speed of singles (M=1.22 m/s, ±
1.16), couples (M=0.92 m/s, ± 0.18), triples (M=0.73 m/s,
± 0.10) and groups of four members (M=0.65 m/s, ± 0.04).
Then, the two tailed t-test analyses were used to identify dif-
ferences in walking speed among pedestrian. Results showed
a significant difference in walking speed between: singles and
couples (p value<0.01), singles and triples (p value<0.01),
singles and groups of four members (p value<0.01), cou-
ples and triples (p value<0.01), triples and groups of four
members (p value< 0.05). In conclusion, the results showed
that the average walking speed of group members (including
couples, triples and groups of four members) is 37.21% lower
than the walking speed of singles.

The correlated results about pedestrian path and speed
showed that in situation of irregular flow singles tend to cross
the space with more frequent changes of direction in order
to maintain their velocity, avoiding perceived obstacles like
slower pedestrians or groups. On the contrary, groups tend
to have a more stable overall behaviour, adjusting their spa-
tial arrangement and speed to face the contextual conditions
of irregular flow: this is probably due to (i) the difficulty in
coordinating an overall change of direction and (ii) the ten-
dency to preserve the possibility of maintaining cohesion and
communication among members.

2.4 Group Proxemics Dispersion
In order to improve the understanding of pedestrian prox-

emics behaviour the last part of the study is focused on the
dynamic spatial dispersion of group members while walk-
ing. The dispersion among group members was measured
as the summation of the distances between each pedestrian
and the centroid (the geometrical centre of the group) all
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normalised by the cardinality of the group. The centroid
was obtained as the arithmetic mean of all spatial positions
of the group members, considering the alphanumeric grid.
In order to find the spatial positions, the trajectories of the
group members belonging to the previous described sample
(15 couples, 10 triples and 8 groups of four members) were
further analysed. In particular, the positions of the group
members were detected analysing the recorded video images
every 40 frames (the time interval between two frames corre-
sponds to about 1.79 seconds, according to the quality and
definition of the video images) starting from the co-presence
of the all members on the alphanumeric grid. This kind of
sampling permitted to consider 10 snapshots for each groups.

(a)

(b)

(c)

Figure 2: A diagram showing most frequent posi-
tions, normalised with respect to the centroid and
the movement direction, assumed by members of
couples (a), triples (b) and groups of four members
(c).

A first analysis was devoted to the identification of the av-
erage proxemics dispersion of couples (M=0.35 m, ± 0.14),

triples (M=0.53 m, ± 0.17) and groups of four members
(M=0.67 m, ± 0.12). Then, the two tailed t-test analy-
ses were used to identify differences in proxemics dispersion
among couples, triples and groups of four members. Results
showed a significant difference in spatial dispersion between:
couples and triples (p value<0.05), couples and groups of
four members (p value<0.01). No significant differences be-
tween triples and groups of four members (p value> 0.05). In
conclusion, the results showed that the average spatial dis-
persion of triples and groups of four members while walking
is 40.97% higher than the dispersion of couples.

Starting from the achieved results about group proxemics
dispersion, we finally focused on a quantitative and detailed
description of group spatial layout while walking. The nor-
malised positions of each pedestrian with respect to the cen-
troid and the movement direction were detected by means
of a sample of 10 snapshots for each groups (15 couples,
10 triple and 8 groups of four members) and then further
analysed in order to identify the most frequent group prox-
emics spatial configurations, taking into account the de-
gree of alignment of each pedestrian (see Figure 2). Re-
sult showed that couple members tend to walk side by side,
aligned to the each other with a distance of 0.4 m (36% of the
sample) or 0.8 m (24% of the sample), forming a line per-
pendicular to the walking direction (line abreast pattern);
triples tend to walk with a line abreast layout (13% of the
sample), with the members spaced of 0.60 m. Regarding
groups of four members it was not possible to detect a typical
spatial pattern: the reciprocal positions of group members
appeared much more dispersed than in the case of smaller
groups, probably to due the continuous arrangements in spa-
tial positioning while walking.

3. PEDESTRIAN SIMULATION MODEL
In this section the formalisation of the agent-based com-

putational model will be discussed, by focusing on the defini-
tion of its three main elements: environment, update mech-
anism and pedestrian behaviour.

3.1 Environment
The environment is modelled in a discrete way by rep-

resenting it as a grid of 40 cm sided square cells size (ac-
cording to the average area occupied by a pedestrian [20]).
Cells have a state indicating the fact that they are vacant
or occupied by obstacles or pedestrians: State(c) : Cells→
{Free, Obstacle, OnePedi, TwoPedsij}.

The last two elements of the definition point out if the
cell is occupied by one or two pedestrians respectively, with
their own identifier: the second case is allowed only in a
controlled way to simulate overcrowded situations, in which
the density is higher than 6.25 pedestrians per square metre
(i.e. the maximum density reachable by our discretisation).

The information related to the scenario4 of the simula-
tion are represented by means of spatial markers, special
sets of cells that describe relevant elements in the environ-
ment. In particular, three kinds of spatial markers are de-
fined: (i) start areas, that indicate the generation points of
agents in the scenario. Agent generation can occur in block,

4It represents both the structure of the environment and all
the information required for the realization of a specific sim-
ulation, such as crowd management demands (pedestrians
generation profile, origin-destination matrices) and spatial
constraints.
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all at once, or according to a user defined frequency, along
with information on type of agent to be generated and its
destination and group membership; (ii) destination areas,
which define the possible targets of the pedestrians in the en-
vironment; (iii) obstacles, that identify all the non-walkable
areas as walls and zones where pedestrians can not enter.

Space annotation allows the definition of virtual grids of
the environment, as containers of information for agents and
their movement. In our model, we adopt the floor field ap-
proach [5], that is based on the generation of a set of su-
perimposed grids (similar to the grid of the environment)
starting from the information derived from spatial markers.
Floor field values are spread on the grid as a gradient and
they are used to support pedestrians in the navigation of
the environment, representing their interactions with static
object (i.e., destination areas and obstacles) or with other
pedestrians. Moreover, floor fields can be static (created at
the beginning and not changed during the simulation) or
dynamic (updated during the simulation). Three kinds of
floor fields are defined in our model: (i) path field, that indi-
cates for every cell the distance from one destination area,
acting as a potential field that drives pedestrians towards it
(static). One path field for each destination point is gen-
erated in each scenario; (ii) obstacles field, that indicates
for every cell the distance from neighbour obstacles or walls
(static). Only one obstacles field is generated in each sim-
ulation scenario; (iii) density field, that indicates for each
cell the pedestrian density in the surroundings at the cur-
rent time-step (dynamic). Like the previous one, the density
field is unique for each scenario.

Chessboard metric with
√

2 variation over corners [13] is
used to produce the spreading of the information in the path
and obstacle fields. Moreover, pedestrians cause a modifi-
cation to the density field by adding a value v = 1

d2
to

cells whose distance d from their current position is below a
given threshold. Agents are able to perceive floor fields val-
ues in their neighbourhood by means of a function Val(f, c)
(f represents the field type and c is the perceived cell). This
approach to the definition of the objective part of the per-
ception model moves the burden of its management from
agents to the environment, which would need to monitor
agents anyway in order to produce some of the simulation
results.

3.2 Pedestrians and Movement
Formally, our agents are defined by the following triple:

Ped = 〈Id, Group, State〉; where State = 〈position, oldDir,
Dest〉, with their own numerical identifier, their group (if
any) and their internal state, that defines the current po-
sition of the agent, the previous movement and the final
destination, associated to the relative path field.

Before describing agent behavioural specification, it is nec-
essary to introduce the formal representation of the nature
and structure of the groups they can belong to, since this is
an influential factor for movement decisions.

3.2.1 Social Interactions
To represent different types of relationships, two kinds of

groups have been defined in the model: a simple group indi-
cates a family or a restricted set of friends, or any other small
assembly of persons in which there is a strong and simply
recognisable cohesion; a structured group is generally a large
one (e.g. team supporters or tourists in an organised tour),

that shows a slight cohesion and a natural fragmentation
into subgroups, sometimes simple.

Members of a simple group it is possible to identify an
apparent tendency to stay close, in order to guarantee the
possibility to perform interactions by means of verbal or
non-verbal communication [7]. On the contrary, in large
groups people are mostly linked by the sharing of a common
goal, and the overall group tends to maintain only a weak
compactness, with a following behaviour between members.
In order to model these two typologies, the formal repre-
sentation of a group is described by the following: Group :
〈Id, [SubGroup1, . . . , SubGroupm], [Ped1, · · · , P edn]〉.

In particular, if the group is simple, it will have an empty
set of subgroups, otherwise it will not contain any direct
references to pedestrians inside it, which will be stored in
the respective leafs of its three structure. Differences on
the modelled behavioural mechanism in simple/structured
groups will be analysed in the following section, with the
description of the utility function.

3.2.2 Agent Behaviour
Agent behaviour in a single simulation turn is organised

into four steps: perception, utility calculation, action choice
and movement. The perception step provides to the agent all
the information needed for choosing its destination cell. In
particular, if an agent does not belong to a group (from here
called individual), in this phase it will only extract values
from the floor fields, while in the other case it will perceive
also the positions of the other group members within a con-
figurable distance, for the calculation of the cohesion param-
eter. The choice of each action is based on an utility value as-
signed to every possible movement according to the function

U(c) =
κgG(c)+κobOb(c)+κsS(c)+κcC(c)+κiI(c)+κdD(c)+κovOv(c)

d
.

Function U(c) takes into account the behavioural com-
ponents considered relevant for pedestrian movement, each
one is modelled by means of a function that returns values in
range [−1; +1], if it represents an attractive element (i.e. its
goal), or in range [−1; 0], if it represents a repulsive one for
the agent. For each function a κ coefficient has been intro-
duced for its calibration: these coefficients, being also able
to actually modulate tendencies based on objective informa-
tion about agent’s spatial context, complement the objective
part of the perception model allowing agent heterogeneity.
The purpose of the function denominator d is to constrain
the diagonal movements, in which the agents cover a greater
distance (0.4 ∗

√
2 instead of 0.4) and assume higher speed

respect with the non-diagonal ones.
The first three functions exploit information derived by lo-

cal floor fields: G(c) is associated to goal attraction whereas
Ob(c) and S(c) respectively to geometric and social repul-
sion. Functions C(c) and I(c) are linear cobinations of the
perceived positions of members of agent group (respectively
simple and structured) in an extended neighbourhood; they
compute the level of attractiveness of each neighbour cell,
relating to group cohesion phenomenon. Finally, D(c) adds
a bonus to the utility of the cell next to the agent according
to his/her previous direction (a sort of inertia factor), while
Ov(c) describes the overlapping mechanism, a method used
to allow two pedestrians to temporarily occupy the same
cell at the same step, to manage high-density situations.
Overlapping plays an important role in preserving overall
pedestrian flow in medium-high density situations (density
higher than 2 pedestrians per square metre) [2].
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Figure 3: Graphical representation of Balance(k), for
k = 1 and δ = 2.5.

As we previously said, the main difference between sim-
ple and structured groups resides in the cohesion intensity,
which in the simple ones is significantly stronger. Func-
tions C(c) and I(c) have been defined to correctly model
this difference. Nonetheless, various preliminary tests on
benchmark scenarios show us that, used singularly, function
C(c) is not able to reproduce realistic simulations. Human
behaviour is, in fact, very complex and can react differently
even in simple situation, for example by allowing temporary
fragmentation of simple groups in front of several constraints
(obstacles or opposite flows). Acting statically on the cal-
ibration weight, it is not possible to achieve this dynamic
behaviour: with a small cohesion parameter several perma-
nent fragmentations have been reproduced, while with an
increase of it we obtained no group dispersions, but also an
excessive and unrealistic compactness.

In order to face this issue, another function has been in-
troduced in the model, to adaptively balance the calibration
weight of the three attractive behavioural elements, depend-
ing on the fragmentation level of simple groups:
Balance(k) =




1
3
· k + ( 2

3
· k ·DispBalance) if k = kc

1
3
· k + ( 2

3
· k · (1−DispBalance)) if k = kg ∨ k = ki

k otherwise

where DispBalance = tanh(Disp(Group)
δ

), Disp(Group) =
Area(Group)

|Group| , ki, kg and kc are the weighted parameters of

U(c), δ is the calibration parameter of this mechanism and
Area(Group) calculates the area of the convex hull defined
using positions of the group members. Fig. 3 exemplifies
both the group dispersion computation and the effects of
the Balance function on parameters. The effective utility
computation, therefore, employs calibration weights result-
ing from this computation, that allows achieving a dynamic
and adaptive behaviour of groups: cohesion relaxes if mem-
bers are sufficiently close to each other and it intensifies with
the growth of dispersion.

After the utility evaluation for all the cells in the neigh-
bourhood, the choice of action is stochastic, with the prob-
ability to move in each cell c as (N is the normalization

factor): P (c) = N · eU(c). On the basis of P (c), agents move
in the resulted cell according to their set of possible actions,
defined as list of the eight possible movements in the Moore
neighbourhood, plus the action to keep the position (indi-

cated as X): A = {NW,N,NE,W,X,E, SW,S, SE}.

3.3 Time and Update Mechanism
In the basic model definition time is also discrete; in an

initial definition of the duration of a time step was set to
0.31 s. This choice, considering the size of the cell (a square
with 40 cm sides), generates a linear pedestrian speed of
about 1.3 m/s, which is in line with the data from the lit-
erature representing observations of crowd in normal con-
ditions [20], nonetheless we already implemented an exten-
sion of the model allowing the management of heterogeneous
walking speeds [1].

Regarding the update mechanism, three different strate-
gies are usually considered in this context [12]: ordered se-
quential, shuffled sequential and parallel update. The first
two strategies are based on a sequential update of agents,
respectively managed according to a static list of priorities
that reflects their order of generation or a dynamic one, shuf-
fled at each time step. The parallel update calculates instead
the choice of movement of all the pedestrians at the same
time, actuating choices and managing conflicts in a latter
stage. The two sequential strategies imply a simpler opera-
tional management, due to an a-priori resolution of conflicts
between pedestrians. For this work, we adopted the parallel
update strategy, in accordance with the current literature,
where it is considered much more realistic due to consider-
ation of actual conflicts between pedestrians, arisen for the
movement in a shared space [11].

With this update strategy, the agents life-cycle must con-
sider that before carrying out the movement execution po-
tential conflicts, essentially related to the simultaneous choice
of two (or more) pedestrians to occupy the same cell, must
be solved. The overall simulation step therefore follows a
three step procedure: (i) update of choices and conflicts de-
tection for each agent of the simulation; (ii) conflicts resolu-
tion, that is the resolution of the detected conflicts between
agent intentions; (iii) agents movement, that is the update of
agent positions exploiting the previous conflicts resolution,
and field update, that is the computation of the new density
field according to the updated positions of the agents.

The resolution of conflicts employs an approach essentially
based on the one introduced in [11], based on the notion of
friction. Let us first consider that conflicts can involve two
of more pedestrians: in case more than two pedestrians in-
volved in a conflict for the same cell, the first step of the
management strategy is to block all but two of them, cho-
sen randomly, reducing the problem to the case of a sim-
ple conflict among two pedestrians. To manage a simple
conflict, another random number between 0 and 1 is gen-
erated and compared to two thresholds, frict l and fricth,
with 0 < frict l < fricth ≤ 1: the outcome can be that all
agents are blocked when the extracted number is lower than
frict l, only one agent moves (chosen randomly) when the
extracted number is between frict l and fricth included, or
even two agents move when the number is higher than fricth
(in this case pedestrian overlapping occurs). For our tests,
the values of the thresholds make it quite relatively unlikely
the resolution of a simple conflict with one agent moving and
the other blocked, and much less likely their overlapping.

4. DISCUSSION OF TEST RESULTS

4.1 Configuration of the Simulation Scenario
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LoS Size Av. Dispersion Observed
A 2 0.336 (± 0.157)

3 0.479 (± 0.153)
4 0.575 (± 0.146)

B 2 0.351 (± 0.174) 0.35 (± 0.14)
3 0.505 (± 0.194) 0.53 (± 0.17)
4 0.609 (± 0.210) 0.67 (± 0.12)

Table 1: Average groups dispersion achieved by the
simulations (standard deviation inside breaks).

The environment is a discrete representation of the part of
Vittorio Emanuele Gallery considered for the data extrac-
tion (see Sec. 2). It consists in a large corridor with size
12.8 m × 13.6 m. At each end, one start area is placed
for the agents generation, respecting the frequency of ar-
rival observed in the videos; corridor ends also comprise a
destination area corresponding to the start area positioned
on the other end. We decided not to consider the attrac-
tiveness of shops for two reasons: first of all, several shops
in this section of the gallery are restaurants and they are
not really much considered at the time of the observation,
second the pedestrians selected for manual analysis did not
stop at any shopping window. In order to reproduce the
levels of service A and B we configured two different fre-
quency profiles which lead to achieve, respectively, 30 and
50 pedestrians in the environment on average. The agent
population comprises 15.8 % of individuals, while the re-
maining part is divided in groups of 2 (52%), 3 (20%) and
4 (28%) members, consistently with the observed composi-
tion of pedestrian population. In order to overcome biases
caused by the simulation initialisation, for both density con-
figurations, a set of 5 relatively short simulations (5 minutes
of simulated time, for a total of 25 minutes of simulated time
for both LOS conditions) has been run with different random
seeds. Finally, simulations have been ran with the following
configuration of the calibration weights: (i) utility function
weights: kg = 8, kob = 2, ks = 30, kc = 6, kI = 6, kd = 2
and kov = 5; (ii) cohesion mechanism: δ = 3.0; (iii) friction
weights: frictl = 0.8, fricth = 0.96.

4.2 Results
The data that can be gathered by means of a simulation

covers a wide array of observable measurements. By means
of this set of experiments, however, out main goal is the val-
idation of reproduced behaviour of the agents inside groups,
evaluating therefore the plausibility of the cohesion mecha-
nism encompassed by the model.

The first measured data represents an indicator of the av-
erage dispersion of the different types of group during the
simulation. Several methods have been proposed in the lit-
erature for describing the dispersion, since it is an intuitive
concept that can however be formalised in different ways [3].
The results shown in Table 4.2 have been achieved by using
the centroid method, describing dispersion as the average
distance assumed by members of the group from its center
of gravity, calculated as the average position of all the group
members.

The results show that the cohesion mechanism is quite
effective: the dispersion of groups in the two settings (LoS

LoS Size Av. Speed Observed
A 1 1.19

2 1.115
3 1.119
4 1.11

B 1 1.172 1.22
2 1.107 0.92
3 1.105 0.73
4 1.099 0.65

Table 2: Average speeds of groups.

A and B) is similar and the increase of density have led to
a very light increase of the average and standard deviation.
The most important consideration, however, is the fact that
these data are consistent with the empirically observed val-
ues (which refer to the B LOS conditions).

Table 4.2 shows instead the average speed characterising
the movement of the different types of pedestrians (individ-
uals or members of a certain type of group), calculated using
the length of the actual trajectory and the time needed to
move from the start area to any cell of the destination area
of the corridor. In this case the model has only been able
to reproduce results similar to the empirically observed data
only for individuals and it only showed a slight decrease in
the velocity of group members. On the other hand, it must
be noted that all the agents have been configured with the
same desired speed of 1.3 m/s, that is based on empirically
observed velocity for pedestrians traveling for business pur-
pose [19]. The same observation reports that pedestrians
moving for leisure generally have a lower average walking
speed. Therefore, our conjecture is that the much lower
walking speed of groups might be due not only to the fact
that members try to preserve the possibility to establish ver-
bal and non-verbal communication, but also to a change in
the reason and motivation for moving in the environment.
Further analyses on this issue are object of future studies.

Finally, Table 4.2 analyses average travel distances cov-
ered by pedestrians in the simulations. This measure is ob-
viously strictly related to the previous one, being actually
used in the computation of the walking speed. As a conse-
quence, even if simulated trajectories are very close to the
measured ones also in this case the model was not able to
differentiate paths covered by individuals and group ones
(in some cases the traveled distance of individuals was ac-
tually lower, unlike in the observed data). In addition to
the above considerations on motivations of the movement,
that can also have an influence in the frequency of direction
changes, we want to emphasise that a discrete model has
intrinsic limits in the faithful reproduction of trajectories
(that are inherently jagged and not as smooth as the real
ones), so it could be difficult improving this kind of result
adopting a discrete model.

5. CONCLUSIONS
This paper has introduced an empirical investigation of

the influence of group presence in crowds of pedestrians by
means of a field observation and a simulation campaign em-
ploying an agent-based model encompassing a specific adap-
tive mechanism for group behaviour in the same scenario.
Empirical results achieved by the model are in tune with the
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LoS Size Av. Distance Observed
A 1 13.767 (± 0.57)

2 13.922 (± 0.621)
3 13.980 (± 0.624)
4 14.052 (± 0.653)

B 1 13.857 (± 0.577) 13.96 (± 1.11)
2 13.99 (± 0.628) 13.39 (± 0.38)
3 14.049 (± 0.654) 13.34 (± 0.27)
4 14.087 (± 0.653) 13.16 (± 0.46)

Table 3: Average travelled distance of groups.

actual observed data for the metrics related to group disper-
sion and walking trajectories. Nonetheless, additional work
must be conducted to further understand if the lower speed
of members of large groups is solely due to group influence
or also to a change in the motivations of pedestrians, and
therefore on their desired walking speed. Analogous consid-
erations can be done for pedestrian trajectories although, in
this case, the model is probably close to the intrinsic limits in
the reproduction of smooth paths of any discrete approach.

6. REFERENCES
[1] S. Bandini, L. Crociani, and G. Vizzari.

Heterogeneous speed profiles in discrete models for
pedestrian simulation. In Proceedings of the 93rd
Transportation Research Board annual meeting, 2014.

[2] S. Bandini, M. Mondini, and G. Vizzari. Modelling
negative interactions among pedestrians in high
density situations. Transportation Research Part C:
Emerging Technologies, 40:251 – 270, 2014.

[3] S. Bandini, F. Rubagotti, G. Vizzari, and K. Shimura.
An agent model of pedestrian and group dynamics:
Experiments on group cohesion. In AI*IA, volume
6934 of Lecture Notes in Computer Science, pages
104–116. Springer, 2011.

[4] T. Bosse, M. Hoogendoorn, M. C. A. Klein, J. Treur,
C. N. van der Wal, and A. van Wissen. Modelling
collective decision making in groups and crowds:
Integrating social contagion and interacting emotions,
beliefs and intentions. Autonomous Agents and
Multi-Agent Systems, 27(1):52–84, 2013.

[5] C. Burstedde, K. Klauck, A. Schadschneider, and
J. Zittartz. Simulation of pedestrian dynamics using a
two-dimensional cellular automaton. Physica A:
Statistical Mechanics and its Applications, 295(3 -
4):507 – 525, 2001.

[6] R. Challenger, C. W. Clegg, and M. A. Robinson.
Understanding crowd behaviours: Supporting
evidence. Technical report, University of Leeds, 2009.

[7] M. Costa. Interpersonal distances in group walking.
Journal of Nonverbal Behavior, 34:15–26, 2010.

[8] J. Dijkstra, J. Jessurun, H. J. P. Timmermans, and
B. de Vries. A framework for processing agent-based
pedestrian activity simulations in shopping
environments. Cybernetics and Systems,
42(7):526–545, 2011.

[9] D. Helbing and P. Molnár. Social force model for
pedestrian dynamics. Phys. Rev. E, 51(5):4282–4286,
May 1995.

[10] C. M. Henein and T. White. Agent-based modelling of
forces in crowds. In Multi-Agent and
Multi-Agent-Based Simulation, MABS 2004, volume
3415 of Lecture Notes in Computer Science, pages
173–184. Springer–Verlag, 2005.

[11] A. Kirchner, K. Nishinari, and A. Schadschneider.
Friction effects and clogging in a cellular automaton
model for pedestrian dynamics. Phys. Rev. E,
67:056122, May 2003.
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ABSTRACT
In this paper, we focus on planning credible walking paths
in real-time for a potentially highly congested crowd of au-
tonomous pedestrians. For this purpose, we exploit the prin-
ciple of least effort, applied to human navigation, which pos-
tulates that credible behaviours emerge as a function of the
organism’s propensity to minimize metabolic energy expen-
diture with respect to task, environment dynamics, and or-
ganism’s constraints to action [17]. We therefore propose
a consistent problem formulation for the navigation task
where both individual and collective dynamics are taken into
account. Each pedestrian is represented as a situated agent
who tries to reach its destination by following energy efficient
paths. Agents are autonomous, and at the same time, sub-
ject to the environment dynamics. They interact with each
other through the environment in order to estimate their en-
ergy expenditure relatively to their tasks. Our formulation
results in a generic and scalable multi-agent model, capable
of simulating individual and collective behaviours regardless
of the number of agents.

Keywords
pedestrian navigation, multi-agent simulation, interaction,
coordination, traffic.

1. INTRODUCTION
Real-time pedestrian crowds simulation is a complex task

for computer scientists. On the one hand, social studies
on pedestrians’ behaviours show that each pedestrian in
a crowd behaves autonomously, conscientiously interacting
with other pedestrians, while pursuing its own objectives
[4]. On the other hand, empirical observations of pedestri-
ans’ flow in highly congested areas demonstrate some strik-
ing similarities between pedestrians’ behaviours and particle
flow dynamics [7].

Consequently to these apparently contradictory issues, de-
signing philosophies diverge on whether to consider pedes-
trians’ characteristics and local interactions, or to focus on
pedestrians’ flow regardless of individual characteristics, in
order to formulate the underlying modelling principles. In

the current literature, a näıve application of each of these
philosophies is proved to lead to partially satisfying results.
The first one could lead to intractable principles [9], resulting
into models that struggle to reproduce collective behaviours
like the edge effect [23] or the fingering effect [28]. The
second philosophy could be inappropriate for low-density
crowds, since it neglects pedestrian individualities, and might
result into models that produce non-realistic individual be-
haviours [5].

In this paper, we explore the principle of least effort (PLE)
[29] applied to human navigation, for a more generic ap-
proach. According to this principle, credible walking paths
emerge as a function of the organism’s propensity to min-
imize metabolic energy expenditure with respect to task,
environment dynamics, and organism’s constraints to ac-
tion [17]. Several psychological studies on human move-
ment showed that metabolic energy expenditure regulation
is critical enough to explain both individual and collective
behaviours among human beings [10, 29, 22, 17]. Following
this idea, our contribution is:

1. a consistent problem formulation of the naviga-
tion task of autonomous pedestrians, where both indi-
vidual and collective dynamics are taken into account.
Pedestrians are situated agents who try to follow en-
ergy efficient paths towards their destinations. They
use navigable resources, which recover the entire navi-
gable space, to build their paths. Navigable resources
mediates interaction between agents and provide dy-
namic measures that help the agents to estimate their
energy expenditure relatively to their task.

2. a generic multi-agent model, in respect with our
formulation, to perform real-time simulations of a po-
tentially highly congested crowd. We will see that the
environment concept from the multi-agent paradigm
is particularly useful to tackle the complexity of the
navigation task. The environment could be seen as an
independent component that maintains dynamic mea-
sures used by agents to compute energy efficient paths.
Moreover, since agents are situated in the environment
and subjected to physical and dynamical constraints,
an important part of the simulation dynamics could
be delegated to the environment without compromis-
ing agents’ autonomy.

Our work is close to IRM4S [15], continuum crowd [24]
and PLEdestrian [5]. We use the same action theory as de-
veloped in the IRM4S model [15] and we adapt the agent
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model in order to fit the specificities of pedestrian naviga-
tion. Like Continuum crowd [24] and PLEdestrian [5], we
use a least effort approach to model agents’ behaviours and
store dynamic information in the environment. However,
the difference with our approach is that we specifically de-
sign the environment as a full component of the model, with
a dedicated dynamics, different from that of agents.

We evaluate our work by submitting an online interview
with videos of our model running on different low-density
scenarios. We also run our model against some well known
collective phenomenon – edge effect and fingering effect –
with encouraging results in terms of credibility and scalabil-
ity.

The rest of the document is organized as follows. In Sec-
tion 2, we present related works on real-time pedestrians
crowd simulation. In Section 3, we introduce our formula-
tion of the navigation task for autonomous pedestrians. We
also give an overview of the global architecture of our generic
multi-agent model, and describe the role of each component.
Sections 4 and 5 are respectively dedicated to the evaluation
and the perspectives of our work.

2. RELATED WORK
Pedestrians crowd simulation is often tackled by using two

types of approaches [21]: microscopic and macroscopic mod-
els.

Microscopic models are built upon pedestrians individ-
ual characteristics and local interactions, assuming that the
combination of local interactions between agents – namely,
collision avoidance mechanisms – and path following tech-
niques, will result in the desired behaviour of the crowd.
Helbing and Molnar [6] introduced the social force model
(SFM) where each pedestrian is subjected to attractive or
repulsive forces. For example, an attractive force could guide
pedestrians toward their objectives, while a repulsive force
keeps them away from obstacle or other pedestrians. The
pedestrian dynamics is assumed to obey conservation laws,
which leads to interesting collective behaviours. Reynolds
[19] developed the concept of steering forces which are guid-
ing forces that correspond to a pedestrian’s preferences. For
instance, a steering force could model the need to reach a
predefined destination, to stay away from a given agent, or
to stay close to a leading agent. Here, the agents dynamics
do not obey any conservation laws, but the application of
steering forces is ruled by a decisional architecture which is
specific to each agent. The steering force paradigm is flexi-
ble and provides believable real-time animation [18]. Fiorini
and Shiller [2] introduced the velocity obstacle paradigm
which reduces the navigation problem of a mobile entity to
the computation of an avoidance manoeuvre that ensures
a collision-free navigation in a dynamic environment. Van
den Berg et al. [26, 25] applied this paradigm and provided
the RVO – Reciprocal Velocity Obstacle – model which is a
robust adaptation for pedestrians real-time navigation.

One of the main challenge for microscopic model is the
management of congestion [9]. Congestion management is
more complex than simple collision avoidance since it in-
volves both time and space considerations. It is also very
critical because it influences the emergence of collective be-
haviours. To handle navigation in a congested area, mi-
croscopic models are often combined with global path plan-
ning techniques or mobile perception fields that helps the
agent to perceive the dynamic features of the environment.

Karamouzas et al. [13] used a dynamic uniform grid and
couple a collision avoidance model with A∗ path-planning
techniques. The dynamic grid provides density occupation
insights to the agents who can, therefore, plan to avoid oc-
cupied areas. Saboia et al. [20] modified the SFM model
to introduce a mobile grid attached to each agent. The mo-
bile grid allows the agent to change its desired velocity at
reasonable time and to navigate through congested areas.
Similar techniques could be found in [11].

Undoubtedly, using dynamic information on the environ-
ment density and fast global path-planning technique speeds-
up the simulation – when an agent avoids occupied areas,
this automatically reduces the calls to a collision avoidance
algorithm, which is the most expensive operation in such
simulations. Nevertheless, most microscopic models sepa-
rate local collision avoidance from global path planning, and
conflicts inevitably arise between these two competing goals.
Those conflicts tend to be exacerbated in highly congested
areas or highly dynamic environments [24].

Macroscopic models offer a more objective modelling frame-
work, concerning these last issues, by representing the crowd
as a whole. Hughes [9] investigated the analytic properties
of human flow and propose the following hypothesis to define
a continuous human flow model:

1. The walking speed of pedestrians is determined by the
density of surrounding pedestrians, the behavioural
characteristics of the pedestrians, and the ground on
which they walk.

2. Pedestrians have a common sense (potential) of the
task they face to reach their common destination, such
that any two individuals at different locations having
the same potential would see no advantage to exchange
their locations.

3. Pedestrians seek to minimize their estimated travel
time but temper this behaviour to avoid extreme den-
sities.

Treuille et al. [24] managed the resulting equations for real
time simulation and define a dynamic potential function to
formalize the navigation as an optimization problem. The
resulting potential function is exploited to generate a dy-
namic vector field that governs the overall crowd behaviour.

Obviously, the underlying principles of a macroscopic mod-
els leave little room for agents’ autonomy. Myopic colli-
sion avoidance behaviours and difficulty to handle several
agents with different destinations, are among the most rel-
evant drawbacks of such approaches. Nonetheless, it is also
obvious that those models produce much more believable
collective behaviours for highly congested crowd. We argue
that those good performances are due to a more coherent
optimization framework. We believe that it is possible to
reproduce a similar framework while preserving pedestrians
autonomy. Thus, we propose a new framework that uses the
multi-agent paradigm, and develop a consistent formulation
of the navigation task for autonomous pedestrians.

3. COUPLING INDIVIDUAL AND COLLEC-
TIVE DYNAMICS

In this section, we present the formulation of the naviga-
tion task for autonomous pedestrians and the full specifica-
tion of our multi-agent model.

Proceedings of 8th International Workshop on Agents in Traffic and Transportation ATT 2014

113



3.1 Formulation
Inspired by the work of Whittle [27], Guy et al. [5] explic-

itly formulated the metabolic energy spent by pedestrians
when they walk:

E = mass ·
∫

(es + ew · |v|2) · dt (1)

Where:

• v is the pedestrian’s instantaneous velocity

• es and ew are individual attributes, respectively equal
to 2.23 J

kg·s and 1.26 J·s
kg·m2 for an average human1

• mass is the pedestrian’s mass.

Kapadia et al. [12] extended this formula to include a
specific collision effort which is the amount of energy that
is expended through collisions:

E = mass ·
∫

(es + ew · |v|2 + ec · cp(t)) · dt (2)

Where:

• cp(t) estimates the penetration depth of the collision if
the agent is colliding with another agent at that point
of time.

• ec = 10 J
kg·m·s is a penalty constant for collisions.

We formulate the navigation task of our agents in regards
to this last equation: each agent will try to minimize it, in-
dividually and subjectively, by speculating on its surround-
ing’s dynamics and adapting its walking behaviour accord-
ingly.

3.1.1 Resources and Task
To support the navigation task, we assume a 2D contin-

uous space which is discretized into contiguous triangular
meshes of homogeneous size. Each triangular mesh is a nav-
igable resource that will be used by agents to build their
path.
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Figure 1: Structure of the continuous space. Each resource

ri is materialized by a triangular mesh. Each pair of resources

(ri, rj) represents a discretized movement from ri to rj . The

real-time cost of a discretized movement (ri, rj) is noted cri,rj .

Figure 1(a) gives an overview of the topological structure
extracted from the continuous space. We choose triangular
meshes because they allow us to recover the entire space
with no discontinuities.

1J: Joules; kg: kilograms; m2 : square meters

Our topological structure induces an oriented graph where
each resource ri represents a node, and each pair of contigu-
ous resources (ri, rj) represents a discretized movement. We
associate a real time cost cri,rj to each discretized move-
ment (ri, rj), to be valued relatively to an agent: cri,rj , at
a given time t, represents the average metabolic energy that
the agent expects to spend if it travels from ri to rj at t
(Figure 1(b)).

Consequently, a first formulation of the navigation task
could be stated as: following the energy most efficient path
available from a given position A towards a destination B,
where the path is represented as a suite of contiguous re-
sources (ri)1≤i≤k, and the total energy of a path is estimated
as the overall cost of the discretized movements that consti-
tute it. This corresponds to the following decision problem:





find (ri)1≤i≤k such as

A ∈ r1
B ∈ rk
ri and ri−1 are contiguous ∀i > 1

min
∑i=k

i=2 cri−1,ri

(3)

With,

cri−1,ri = es ·Dri−1,ri +

ew · Sri−1,ri · |vri,ri−1 |2 +

ec ·Dri−1,ri ·
(
qri + qrj

)
(4)

Where,

• Dri,rj is a real time estimation of the mean total travel
time from ri to rj including the potential delays due
to congestion.

• Sri,rj is a real time estimation of the mean travel time
from ri to rj excluding the delays due to congestion.

• vri,rj is a real time estimation of the mean travel speed
from ri to rj .

• qri is a real time estimation of the mean number of
agents in ri.

Equation (4) corresponds to our estimation of the metabolic
energy expenditure for a discretized movement, drawn from
equation (2). As stated above, it represents the real time es-
timation of the amount of energy that the agent expects to
spend if it travels from ri to rj . Here, we suggest that the
number of expected collisions is proportional to the mean
number of agents in both resources rj and rj . For sim-
plicity, we have neglected the contribution of the mass and
considered a constant penetration depth for collisions.
Dri,rj , Sri,rj , qri , qrj and vri,rj are stochastic measures

that are estimated relatively to an agent. Since they are
closely related to the traffic, we also call them dynamic in-
formation variables. In the next section, we propose an ex-
plicit formulation of those variables. For that purpose, we
introduce an independent traffic module which is in charge of
converting the collective dynamics into individual utilities.

3.1.2 Converting Collective Dynamics into Individ-
ual Utilities

We assert that there is a straight analogy between the traf-
fic within a navigable resource – namely, agents entrances
and exits – and the queueing phenomenon [30]. Queue-
ing theory is sometimes used in pedestrians flow simulation,
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especially in evacuation simulation [14]. This theory pro-
vides pragmatic mathematical tools to describe the quality
of the traffic when many client users want to access a service
provider with limited capacity. It is possible to estimate the
quality of the traffic through stochastic measures like, mean
service times, mean delays, mean number of users, etc., if
the probabilities distribution of departure and arrival times
of users are known.

Here, we assimilate a navigation resource to a provider,
agents to users, and discretized movements to services pro-
vided by resources. If an observer watches the entrance and
exit times of transiting agents within navigation resources
during the simulation, we can derive the following measures
relatively to the observer by exploiting the queueing theory
(the exponent “o” means that the estimation is relative to
the observer):

Do
ri,rj = qori ·

(
λo
ri,rj

)−1

(5)

So
ri,rj =

(
µo
ri,rj

)−1

(6)

vori,rj = Lri,rj ·
(
So
ri,rj

)−1

(7)

• λo
ri,rj and µo

ri,rj represent respectively arrival and de-
parture frequencies of users travelling from ri to rj

• qori is the mean number of users within ri – equation
(5) is derived from Little’s formula [30, p. 85]

• Lri,rj is the average length of (ri, rj)

An acceptable parallel would be therefore to associate an
observer to each agent in order to derive the dynamic in-
formation variables relatively to agents. But for a real-time
simulation perspective, this choice is risky in terms of mem-
ory use. This is why we introduce a single instance of a
traffic module, that observes the arrival and departure of
agents for each navigation resource, and compute dynamic
information variables for them when requested. Agents in-
teract with each others through the traffic module, by send-
ing notifications when they enter or exit a navigation re-
source. Notifications are used by the traffic module to his-
torize movements within each resource, and every agent can
access dynamic information variables of resources that are
within its sensor range. Note that it is possible to distribute
several modules over the navigable space in order to process
notifications efficiently.

Finally, we use (8) and (9) to consider agents’ individ-
ual parameters in the explicit formulation of our dynamic
information variables.

qr = qor (8)

For any dynamic variable Mri,rj :

Mri,rj = M⊥ri,rj +
qri + qrj
2 · qmax

·
(
Mo

ri,rj −M
⊥
ri,rj

)
(9)

• Mo
ri,rj is the value of the variable as computed by the

traffic module

• M⊥ri,rj is the value of the variable computed by the
agent as if there was no traffic within ri and rj –

i.e. by considering only its individual parameters and
topological data. Note that if we assume Vpref as the
preferred velocity of an agent from ri to rj , we can
derive:

D⊥ri,rj =
Lri,rj

Vpref
(10)

S⊥ri,rj = D⊥ri,rj (11)

v⊥ri,rj = Vpref (12)

• qmax is the maximum possible size of the resource
(number of users)

Note that equation (9) formalizes two intuitive facts:

1. The more relevant the traffic, the more macroscopic is
the measure of the variable

2. The less relevant the traffic the more individual is the
measure.

In the next section, we present the specification of a generic
multi-agent model that performs real-time simulations ac-
cording to our formulation.

3.2 A Generic Multi-Agent Model
A key point for the specification of our model is the ac-

tion theory to be used to implement the situated agents’ be-
haviours. Our approach relies on the influence reaction prin-
ciple proposed in [1], where there is a clear distinction be-
tween influences, which are produced by agents’ behaviours,
and the reaction of the environment. Precisely, our model
specification is inspired from the IRM4S – Influence Reac-
tion Model for Simulation [15] – which is a concretization of
[1]’s theory for real-time simulation. In IRM4S, two distinct
dynamics are coupled: agents generate influences to modify
their representation in the environment, and environment
reacts to all influences according to natural laws, and up-
dates all the agents’ representations. Here, we adapt the
environment architecture to include a physics engine that
updates agents’ representations and a traffic module that
mediate interaction between agents.

Figure 2 represents the global architecture of our frame-
work.

The physics engine is responsible for the dynamics of
agents’ bodies. It updates bodies’ positions and instanta-
neous speeds with respect to influences provided by agents,
and accounts for shocks and collisions.

The traffic module is responsible for the dynamic in-
formation variables maintenance. It defines the topological
structure that represents the continuous space, and mediate
interactions between agents while they navigate.

An agent is a relationship between a mind and a body.
The mind dynamically maintains the energy most efficient
path, relatively to the agent, and influences the body to
follow the path until it reaches the destination.

We now detail the most important features of the model.

3.2.1 Agent
Our agent’s model defines a dynamic search algorithm and

an influences set generation process that guide the body to-
wards the agent’s destination.

The dynamic search algorithm starts from a current path
and iteratively applies elementary moves, that consists in
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1

2

3

4

5

6

7

8
9

10

11

12

13

(b) Presentation of the descriptive ele-

ments of an agent behaviour : the con-

nected clear meshes represent the path

of the agent. The bold curved arrow is
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Figure 2: Overview of our generic multi-agent model

replacing links (discretized movements) in the current path,
with alternative links in order to generate a more efficient
path. Links replacement concerns only the resources that
are sensed by the agent at the beginning of the search pro-
cess. We experienced that such a dynamic search could
be implemented efficiently by using an evolutionary search
heuristic with a limited number of iterations [3]. Due to the
lack of space, we do not detail the specification of this algo-
rithm in this paper. We mostly focus on the architecture of
the model.

An influences set could be visualized as a curved line that
links the current agent’s position with the farthest sensed
resource on the path – see Figure 2(b). It formally represents
the preferred velocities that the agent would take to reach
its destination. The influences set computation could be
handled by any linear interpolation algorithm.

To apply an influence to the body, the mind iteratively
executes the algorithm 1. It selects the first influence from
the current influences set and apply it to the body as the
preferred velocity. When the body’s position is updated by
the physics engine, the mind notifies its movement to the
traffic module which notifies back the travelled resources in
order for the mind to update its path and, therefore, the
current influences set.

3.2.2 Physics Engine
The physics engine updates bodies’ positions and instan-

taneous speeds according to the velocity obstacle paradigm.

Algorithm 1: Application of influences

Data:
pos: mind’s current assumed position ;
I: ordered set of influences ;
path: current path ;

1 Select the first influence from I, Vpref ;
2 Set Vpref to the body as the preferred velocity ;
3 Get the new position posnew computed by the physics

engine ;
4 Notify the traffic module with (pos, posnew) to get the

travelled resources ;
5 Update path according to the travelled resources ;
6 Update I ;
7 Set posnew as the mind’s assumed position ;

Given a preferred speed it computes the closest instanta-
neous velocity that allows a collision-free navigation in re-
gards to all the dynamic obstacles.

3.2.3 Traffic Module
The traffic module updates traffic history tables of the re-

sources according to a history time step. A traffic history
table is a sliding window of predefined length that histor-
izes agents’ notifications. Two types of traffic history tables
are associated to resources : size history table, to be used
to estimate the mean number of users within the resource,
and transition history tables, to be used to evaluate arrival
or departure frequencies – a transition history table is as-
sociated to each discretized movement. When the traffic
module is notified by an agent – with the mind’s assumed
position and the body’s new position – it builds back the
travelled resources chain to the agent, and stores them in a
notification list. The notifications list is then processed at
each history time step to maintain the traffic history tables
of the travelled resources. We use a temporary classification
for travelled resourced, labelled“Active”, to process notifica-
tions efficiently. Active resources are resources that contains
non zero values in their respective traffic history tables. At
each history time step, only Active resources are maintained
according to the algorithm 2.

4. EVALUATION
We have implemented our model in C++ on a standard

MS machine – Intel E6550 dual core with a 2.33GHz proces-
sor and 2GB of memory – and carried out some experiments
that highlight the most interesting features of our work,
comparing to classical microscopic models. We have cho-
sen the latest version of the RVO model, optimized for colli-
sion avoidance and CPU performances [25], to run series of
comparative evaluations on selected benchmarks. The RVO
model exploits the velocity obstacle paradigm as the un-
derlying navigation principle, and performs within a multi-
agent framework. We used the same type of collision avoid-
ance algorithms to design a physics engine that matches our
specification. The discretization of the space into triangle
meshes has been realized with the freefem++ software 2.
Here, agents are physically represented as 2d disks of pre-
defined radius and each resource cannot contain more than
four agents.

2www.freefemplusplus.org
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Algorithm 2: Traffic history table maintenance

Data:
Actives: “Active” resources list ;
Notifications : list of the travelled resources ;

1 foreach r ∈ Actives do
2 Set the current history index value to 0 for every

traffic history table of r ;

3 end
4 foreach c ∈ Notifications do
5 Update Actives with the new travelled resources ;
6 if |c| == 1 then /* c has only one resource rc

*/

7 Q(rc)← size history table of rc;
8 increment the current history index value of

Q(rc) ;

9 else /* c has discretized movements (ri, rj) */

10 foreach (ri, rj) ∈ c do
11 T rj (ri)← transition history table of (ri, rj);
12 Q(rj)← size history table of rj ;
13 Q(ri)← size history table of ri;
14 decrement the current history index value of

Q(ri) ;
15 increment the current history index value of

T rj (ri) ;
16 increment the current history index value of

Q(rj) ;

17 end

18 end

19 end
20 Ignore non “Active” resources for the next step ;

We conducted two types of evaluations:

1. an online interview: we have invited volunteers to com-
pare the performances of both model on low-density
scenarios.

2. a validation of two well-known collective behaviours
witnessed in highly congested crowds: the edge [23]
and the fingering effects [28]

4.1 Online Interview
We have uploaded an online interview 3 to compare both

models on several scenarios among the most frequently men-
tioned – see [12]. For each scenario, a pair of videos showing
the performances of our model (labelled“GMAM”) and RVO
has been uploaded, and participants were invited to assign
a comparative note among the following:

1. “none”: none of the video is credible.

2. “++ credible”: the left/right side video is much more
credible

3. “+ credible”: the left/right side video is more credible

4. “equally credible”: both videos are equally credible

To ensure an objective comparison, the underlying model
for each video has been hidden to participants, and videos
were presented in a random order from one scenario to an-
other. Figure 3 presents the results of the interview for the
following benchmarks :
3www-desir.lip6.fr/˜simokanmeugne/evaluation0.html

1. “Same Direction”: a group of pedestrians walking in
the same direction

2. “Crossing”: a crossing between two groups of pedestri-
ans walking in opposite directions

3. “Fast and Slow”: a fast pedestrian walking behind a
group of slow pedestrians

4. “Narrow Passage”: a group of pedestrians taking a nar-
row passage
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Figure 3: Results of the online interview. Our model is

labelled as “GMAM”

A total of 140 participants completed the interview. Most
of them (73%) were students or academics from our univer-
sity. Results of the interview show that participants mas-
sively classified our model as the most credible for the given
benchmarks. Hereinbelow, we justify the most relevant fea-
tures of our model comparing to RVO.

1. “Same Direction”: our agents plan away from lateral
and front resources for more efficiency. This results
into emergent V-like patterns that we can witness in
real life [16].

2. “Crossing”: less occupied and more fluid resources offer
a better individual utility according to our formulation
of the navigation task. As result, our agents prefer
such resources in this benchmark and self-organize into
unidirectional lanes.

3. “Fast and Slow”: the fastest agent, in our model, over-
takes as soon as it gets close to the slow pedestrians
group while the RVO agent passes in the middle of the
group. Our agent plans for the surrounding resources,
since they have better utility values relatively to its
preferred speed.

4. “Narrow Passage”: The more agents arrive at the en-
trance of the passage, the more the entrance’s sur-
rounding resources become congested. As result, our
agents steer back to avoid congested areas at the en-
trance of the passage, while RVO agents spread later-
ally on the borders.

Next, we evaluated the performances of both models against
two well-studied collective behaviours:
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1. Edge effect: for unidirectional flows of pedestrians,
sides move faster than the center of the crowd [23, 5,
20].

2. Fingering effect: for bidirectional flows, pedestrians
self-organize into unidirectional lanes to limit conflicts
with the oncoming flow [23, 28].

4.2 Collective phenomenon
Figures 4(a) and 4(b) illustrate how our model renders

the fingering effect and the edge effect for low-density sce-
narios. The goal of this second evaluation is to generalizes
the results for highly congested crowds.

(a) Fingering effect

(b) Edge effect

Figure 4: Illustration of our model performances against

the edge effect (b) and the fingering effect (a) for low-density

scenarios. Agents and their influences sets are coloured ac-

cording to the direction of the movement. Here, the blue

colour is for agents moving from the left to the right and the

red colour, for agents moving from the right to the left.

To reproduce highly congested crowds for this second eval-
uation, we realized four simulations of one thousand agents
in restricted areas : for the edge effect, one thousand agents
moving in the same direction, and for the fingering effect, a
crossing between two groups of five hundred agents moving
in two opposite directions. Figure 5 gives an overview of the
differences between the performances of both models.

We can see that our model (Figures 5(b) and 5(d)) matches
the descriptions of the collective behaviours better than RVO
(Figures 5(a) and 5(c)).

Figure 5(d) illustrates self-organization into unidirectional
lanes. Figure 5(b) shows side agents deviating from the
center of the crowd and a more important concentration
of agents in the middle of the crowd. These are encourag-
ing results which prove that our model can produce credible
results even for highly congested crowds.

(a) Edge Effect: RVO (b) Edge Effect: GMAM

(c) Fingering Effect: RVO (d) Fingering Effect: GMAM

Figure 5: Validating the fingering effect and the
edge effect

5. CONCLUSION AND PERSPECTIVES
We proposed a generic multi-agent model for real-time

simulation of a potentially highly congested crowd of au-
tonomous pedestrians. We are interested in reproducing
credible walking paths in real-time regardless of the num-
ber of agents. Our model originates from the principle of
least effort applied to human walking behaviours and uses
the influence and reaction principle to implement agents’
behaviours. Agents communicate through a traffic module
to dynamically maintains energy efficient paths, while being
subject to a physics engine which updates their positions
and instantaneous speeds.

The different experiments that we have made show en-
couraging results in terms of credibility. The dynamic plan-
ning algorithm that we used in combination with a traf-
fic module give more insight to the agents and favours the
emergence of complex individual and group behaviours like
overtaking and V-like formations. Moreover, our model per-
forms better than a classic microscopic model (RVO) when
the number of agents increases, and reproduces some well-
known collective behaviours like the fingering and the edge
effect.
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As short-term perspectives, we intend to work on the dy-
namics search calibrations in order to evaluate our work in
terms of CPU performances. As mean-term perspectives,
it could be interesting to study resource aggregation tech-
niques to allow hierarchical planning. Deducing dynamic in-
formation for aggregated resources could be done the same
way as for elementary resources, i.e. computed from agents’
notifications. Also, we want to extend our formulation in
order to account for time constraints and emergency sit-
uations. The concept of generalized cost developed in [8]
provides interesting insights for that purpose. A long-term
perspective is to work on the concept of resource policy to
describe complex resource in terms of service quality. A re-
source policy could describe how a resource should be used.
This could be helpful to elaborate richer urban simulations
and integrate complex transports facilities like escalators,
elevators, etc.
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ABSTRACT
One proposes to analyze the stability of the uniform so-
lutions of microscopic second order following models with
K ≥ 1 predecessors in interaction. We calculate general
conditions for that the linear stability occurs, and explore
the results with particular distance based pedestrian and
car-following models. Non linear relations between K and
the stability are established.

Categories and Subject Descriptors
G.1.7 [Ordinary Differential Equations]: Convergence
and stability

General Terms
Linear stability theory

Keywords
Car-following model; Linear stability analysis of uniform so-
lution; Number of predecessors in interaction

1. INTRODUCTION
Microscopic particles systems are frequently used to model

pedestrian crowd or road traffic flow behaviors [3, 6]. Con-
tinuous models are defined with differential equations sys-
tems. The differential systems can be ordinary, stochastic
or delayed, and of first or second order. The models have
the uniform configuration (where the spacing and the speed
are constant and equal) as equilibrium solution. The linear
stability analysis of the uniform solutions allows to describe
stationary state of the models [11]. The method consists in
determining conditions on the parameters for which pertur-
bations around the uniform solution vanish.

The number of predecessors in interaction is an essential
parameter of the models. It is interpreted as an anticipa-
tion factor in traffic flow modeling [15]. Many car-following
models with several predecessors in interaction exist in the
literature [2, 10, 9, 12]. For pedestrian models, the param-
eter corresponds to the interaction range. In this paper, we
calculate the linear stability for general ordinary models of
second order with K ≥ 1 predecessors in interaction. The

results are explored with particular distance-based pedes-
trian and car-following models. They allow to justify when
and why only a limited number of preceding agents needs
to be taken into account when practically determining the
acceleration of an agent.

1.1 Definition of the model
Let us consider an infinite 1D system of agents moving in

the same direction. We denotes n ∈ N the index and (xn)
the curvilinear positions of the agents. We suppose that the
initial positions are such that the predecessor of the agent n
is the agent n+ 1.

The dynamics of the system are described by the second
order model

ẍn(t) = A
(
ẋn(t), xn+1(t)− xn(t), ẋn+1(t), . . . ,

xn+K(t)− xn(t), ẋn+K(t)
)
.

(1)

The acceleration A of the agent n at time t ≥ 0 depends on
the speed, and on the speeds and distance spacings of the
K predecessors at the same time. We assume the function
A differentiable.

1.2 Uniform solution
For a given mean spacing d > 0, we suppose that a speed v

exists such that A (v, d, v, 2d, v, . . . ,Kd, v) = 0. Under this
assumption, the uniform (or homogeneous) configurations
H such that for all t ≥ 0 and all n

xHn+1(t)− xHn (t) = d, xHn (t) = xHn (0) + vt, (2)

are solution of the system. It exists an infinity of uniform
configurations, depending on the initial conditions. The lin-
ear stability of these solutions is investigated in this paper.

2. LINEAR STABILITY ANALYSIS
The literature distinguishes local stability analysis, for a

finite line of agents with a leader traveling at a know speed,
and global stability, for agents on a ring or on an infinite
lane. The global stability conditions are more restrictive
since they contain as well convective perturbations, that can
locally vanish [14]. Here the global stability conditions are
calculated on an infinite lane.

2.1 Characteristic equation
The stability conditions are calculated by studying the

evolution of the differences x̃n(t) = xn(t)−(xHn (0)+vt). An
uniform solutionH is stable if limt→∞ x̃n(t) = limt→∞ ˙̃xn(t) =
0 for all n.
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A first order Taylor approximation of (1) leads to the lin-
ear dynamics

ÿn(t) =

K∑

k=1

αk(yn+k(t)− yn(t)) +

K∑

k=0

βkẏn+k(t). (3)

where αk = ∂A
∂dk

(v, d, v, . . .) and βk = ∂A
∂vk

(v, d, v, . . .).

A uniform configuration H is linearly stable if limt→∞
yn(t) = limt→∞ ẏn(t) = 0 for all n. If we solve (3) using the
Ansatz yn(t) = ξ eλt+inθ, ξ, λ ∈ C2, θ ∈ R, we obtain the
characteristic equation

λ2 =

K∑

k=1

αk(eikθ − 1) + λ

K∑

k=0

βke
ikθ. (4)

H is linearly stable if the non nil roots of the characteristic
equation have strictly negative real parts.

2.2 Linear stability condition
The characteristic equation is the complex polynomial

equation with coefficients (νθ, µθ, σθ, ρθ) ∈ R4

λ2 + wθλ+ zθ = 0, wθ = µθ + iσθ, zθ = νθ + iρθ (5)

with µθ = −∑K
k=0 βkckθ, νθ =

∑K
k=1 αk (1− ckθ), σθ =

−∑K
k=1 βkskθ, ρθ = −∑K

k=1 αkskθ, using the notations cx =
cosx and sx = sinx.

The sufficient and necessary conditions for that a polyno-
mial with complex coefficients have all its zeros in the half-
plane <(λ) < 0 are given in [4, Th. 3.2]. The results are a
generalization of the so-called Hurwitz conditions for poly-
nomials with real coefficients. They are here

∑K
k=0 βk < 0

and

µθ > 0, µθ(νθµθ + ρθσθ)− ρ2θ > 0, θ ∈]0, π]. (6)

The condition is general and can be rediscovered in [13] with
a model with one predecessor, or in [10] with the multi-
anticipative optimal velocity model.

3. DISTANCE BASED MODELS
Many pedestrian dynamics models continuous in space are

based on the superposition of a positive term to the desired
speed and a negative repulsive one with the predecessors
(see for instance [8, 5, 7])

ẍn(t) =
1

τ
(v0 − ẋn(t))−

K∑

k=1

f (xn+k(t)− xn(t)) , (7)

with v0, τ > 0 and f a differentiable, positive, decreasing
function on R+. Here, the repulsive force f solely depends
on the spacing.

With this model class, for a given mean spacing d, the
equilibrium speed is v = v0 − τ

∑K
k=1 f(kd). The speed v

depends on v0,K, d, τ and f(.) parameters. The first linear
stability condition (6) is here−1/τ < 0. It is always true and
implies the preliminary assumption. The second condition
(6) is

− 1

τ2

K∑

k=1

f ′(kd) (1− ckθ)−
(

K∑

k=1

f ′(kd)skθ

)2

> 0. (8)

Note that f ′(d) ≤ 0 for all d and thus the first term is
positive and that the condition does not depend on v. The
stability occurs for a relaxation time τ small enough. More

precisely the homogeneous configurations are stable if and
only if

0 < τ < τK = inf
θ∈]0,π]

τ
(θ)
K ,

with τ
(θ)
K =

(−∑K
k=1 f

′(kd) (1− ckθ)(∑K
k=1 f

′(kd)skθ
)2

)1/2

.
(9)

We have limx→∞ f(x) = f(y) −
∫∞
y
|f ′(u)| du = 0 for

all y > 0. This implies
∫∞
y
|f ′(u)| du < ∞ since for all

y > 0, f(y) < ∞. Using the Cauchy criteria and changing
the variable, one then obtains

∞∑

k=1

|f ′(dk)| <∞, d > 0. (10)

This proves the absolute convergence of τ
(θ)
K and τK , and

means that the stability condition at the limit K → ∞
may be approximated for an finite value of K. It exist with
this model class an intrinsic interaction range. The value
of the range depends on the convergence speed of the series∑
k |f ′(dk)|. This point will be further investigated using

well-know repulsive forces f .

3.1 Exponential and inverse models
Let firstly consider the exponential repulsive force with

parameters A,B > 0 into (7)

f(d) = Ae−d/B , f ′(d) = −A/Be−d/B . (11)

This force is used in the social force model [8]. Because of the
use of exponential decreasing, the interaction model is short
range. We use the uni-dimensional parameter u = d/B > 0
and critical relaxation time

τ̃
(θ)
K =

√
A

B
τ
(θ)
K . (12)

We have with the exponential repulsive force (11) using (9)

τ̃
(θ)
K (u) =

(∑K
k=1 e

−ku (1− ckθ)(∑K
k=1 e

−kuskθ
)2

)1/2

. (13)

u is a shape parameter, while A and B are scale parameters
for the stability.

The inverse repulsive force with parameters A,B, q > 0 is

f(d) =
A

(d/B)q
, f ′(d) = − qA/B

(d/B)q+1
. (14)

This model is used in [5] with q = 1 and in [7] with q = 2.
Here, the model can be short or long range depending on the
value of q. It induces a polynomial convergence speed of f ′

to zero, slower than the exponential speed of the model (11).
This suggests higher number of pedestrians in interaction K
to stabilize the critical time τK . We have with this model
the dimensionless critical relaxation time

τ̃
(θ)
K (u, q) =

(
uq+1

q

∑K
k=1(1− ckθ)k−(q+1)

(∑K
k=1 skθk

−(q+1)
)2

)1/2

. (15)

Here again, only q is a shape parameter.
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3.2 Stability condition
The uniform solution (2) is linearly stable for the distance

based models (11) and (14) if the relaxation time τ is strictly

less than critical time τK = infθ τK(θ) (or if
√
A/Bτ < τ̃K).

Thus we have to calculate the minimum of the functions θ 7→
τ̃K(θ) to determine the stability condition. Yet, the signs
of the derivative of these functions are hardly analytically
extracted. We investigate it numerically.

The critical time (13) of the exponential model (11) is
plotted as a function of θ in figure 1. Here, K varies from

1 to 25, and u = 0.4, 1 and 2.5. The τ̃
(θ)
K are minimal

at the limit θ → 0 for all K, i.e. τ̃K = limθ→0 τ̃
(θ)
K with

the exponential force (11). Further numerical investigations
(not shown here) confirm this observation.
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θ

Figure 1: The τ̃
(θ)
K , K = 1, . . . , 25, as a function of θ

for the exponential model (11). From top to bottom
u = 0.4, 1, 2.

The critical time (13) for the inverse model (14) is plotted

as a function of θ in figure 2 with q = 1, 2 and 3. The τ
(θ)
K

are minimal for θ → 0 when K is low. For high values of K,

the minimums of τ
(θ)
K are reached for θ = θq,K > 0. Further

results show that θq,K converge when K increases. There-
fore the wave’s lengths the more unstable have characteristic
values with the inverse model, if K is large enough.
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Figure 2: The τ̃
(θ)
K , K = 1, . . . , 25, as a function of

θ for the inverse model (14). From top to bottom
q = 1, 2, 3; u = 1.

3.3 Stability function of K
The dimensionless critical time τ̃K delimits the border of

the linear stability of uniform solutions. The stability occurs
if
√
A/Bτ is strictly smaller than τ̃K (see (9)).

The dimensionless function K 7→ τ̃K is plotted in figure 3
for the model (11), and in figure 4 for (14). One can observe
for both models that the critical time τK converges to a
constant value through a single damped oscillation. This
non linear relation between K and the stability is surprising.
Increasing the number of pedestrians in interaction firstly
results as a decreasing of the stability (at least until K = 2).
Then increasing K increase τK and so the stability. The
convergence of τK is relatively smooth with the model (11).
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One observes a brusque transition with the model (14), when
the minimum is reached for the θq,K . The form and speed
of the damping of function K 7→ τ̃K depend on parameter u
for the model (11), and on q for (14).
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0.84

1 10 20

τ̃ K

u = 0.4
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τ̃ K
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Figure 3: τ̃K = infθ τ̃
(θ)
K as a function of K for the

exponential-distance model (11) with u = 0.4, 1, 2.

3.4 Proportion of variation
The figures 3 and 4 show damping oscillations of τ̃K as K

increases. Here, we investigate the amplitude of the oscilla-
tion. For that purpose, we introduce the proportion

ϕ = 1− minK τ̃K
maxK τ̃K

= 1− minK τK
maxK τK

, (16)

that is the same for the initial and dimensionless critical
time τK and τ̃K .

The proportion of variation ϕ ∈ [0, 1] describes how the
models depend on the number K. For ϕ ≈ 0, the model
poorly depends on the interaction range, i.e. the stability
condition as K → ∞ is well approximated using few pre-
decessors (K small), and oppositely for ϕ ≈ 1. For both
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1 20 40
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Figure 4: τ̃K = infθ τ̃
(θ)
K as a function of K for the

inverse model (14) with q = 1, 2, 3; u = 1.

models (11) and (14), ϕ does not depend on A and B. It
depends on u for the exponential model (11), while it de-
pends on q for the inverse model (14), but not on u.

In figure 5, the proportion of variation ϕ is plotted as a
function of u for the model (11) (top plot), and as a function
of q for the model (14) (bottom plot). ϕ tends to zero as
the dimensionless mean spacing u increases within model
(11). This means that for low density level, the stability
condition at the limit K → ∞ can be well estimated using
few predecessors. For high densities, the variability of τ̃K is
more important. The same phenomena occurs as q increases
within model (14). For short range model where q is high,
few predecessor in interaction are sufficient to estimate the
stability condition as K → ∞ and oppositely. Surprisingly,
the proportion of variation does not depend on the density
level with the inverse model. This changes in the case when
the distance spacing d is taken as d− ` to take into account
the size ` > 0 of the pedestrians.
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Figure 5: Proportion ϕ of variation of τK as K in-
creases. Left, function of u, model (11). Right, func-
tion of q, model (14).

3.5 Stability function of the parameters
The function τ̃K depends on the parameter u for the model

(11), and on (u, q) for (14). For the model (11), the function
u 7→ τ̃K(u) increases to infinity as u increases. This means
that the stability increase as the distance spacing increases,
for any K. One has explicitly

∂τ̃
(θ)
K

∂u
(u) =

τ̃
(θ)
K (u)

2
g
(θ)
K (u) > 0 (17)

with g
(θ)
K (u) = −

∑K
k=1 k e

−uk(1−ckθ)∑K
k=1

e−uk(1−ckθ)
+

2
∑K
k=1 k e

−ukskθ∑K
k=1

e−ukskθ
.

We have g
(θ)
1 (u) = 1 for all u, while limu g

(θ)
K (u) = 1 for

all u and all K > 1.
In top figure 6, the increasing critical time τ̃K(u) at the

limit K → ∞ are compare to the time τ̃1(u) for K = 1.
One has limK τ̃K(u) < τ̃1(u) for all u, while, as expected
since the proportion of variation tends to zero, limu τ̃1(u) =
limu τ̃K(u) for any K.

For the model (14), the function u 7→ τ̃
(θ)
K (u, q) also in-

creases as u increases since

∂τ̃
(θ)
K

∂u
(u, q) =

q + 1

u
τ̃
(θ)
K (u, q) > 0. (18)

The relation q 7→ τ̃
(θ)
K (u, q) is more complicated. For u <

1, the function decreases to zero as q increases. This means
that stability never holds for any τ for enough high q. For

u = 1, τ̃
(θ)
K (1, q) tends to a constant value, while, for u > 1,

the relation, successively decreasing and increasing, admits

a minimum for certain q depending on u. One has

∂τ̃
(θ)
K

∂q
(u, q) =

τ̃
(θ)
K (u, q)

2

(
lnu− 1

q
+ h

(θ)
K (q)

)
, (19)

h
(θ)
K (q) = −

∑K
k=1 ln k k−(q+1)(1−ckθ)∑K
k=1

k−(q+1)(1−ckθ)
+

2
∑K
k=1 ln k k−(q+1)skθ∑K
k=1

k−(q+1)skθ
.

ForK = 1, h
(θ)
1 (q) = 0 for all q, and the sign of ∂τ̃

(θ)
1 /∂q >

0 is the sign of lnu − 1/q. It is negative for all q if u < 1.

If u > 1, ∂τ̃
(θ)
1 /∂q < 0 for q < 1/ lnu, and ∂τ̃

(θ)
1 /∂q > 0

for q > 1/ lnu. The τ̃
(θ)
1 (u, q) are minimum for q = 1/ lnu.

Comparable properties are obtained for K > 1. One has

−1/q + h
(θ)
K (q) → −∞ as q → 0, ∂τ̃

(θ)
K /∂q is firstly nega-

tive, and it is of the sign of lnu as q increases since −1/q +

h
(θ)
K (q)→ 0 as q →∞.
The critical time τ̃K(u, q) at the limit K →∞ is compared

to τ̃1(u, q), for u = 0.4 and u = 2, and as a function of q in
bottom figure (6). Here τ̃1(u, q) < limK τ̃K(u, q) for all u, q,
while, as expected, limq τ̃1(u, q) = limq τ̃K(u, q) for any K
and u.
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Figure 6: Dimensionless critical relaxation time

τ̃K = infθ τ̃
(θ)
K for K = 1 (dotted lines), and at the

limit K → ∞ (continuous lines). Top, function of u,
model (11). Bottom, function of q, model (14).

3.6 Optimal velocity model
The multi-anticipative optimal velocity model with K ≥ 1

predecessors in interaction [10] is

ẍn(t) =

K∑

k=1

ak

{
V

(
1

k
(xn+k(t)− xn(t))

)
− ẋn(t)

}
. (20)

Here (ak) ∈ RK+ . With this model, the equilibrium speed v
corresponding to the mean spacing d is v = V (d). The first
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condition (6) is
∑K
k=1 ak > 0. It is always true and implies

the preliminary assumption. The second condition (6) is,
after rearranging

0 < V ′ <

(∑K
k=1 ak

)2∑K
k=1

ak
k

(1− ckθ)
(∑K

k=1
ak
k
skθ
)2 (21)

(see [10, Eq. (14)]).
Note that the case K = 1 corresponds to the well know

Optimal Velocity model [1]. For this model, the condition is
V ′(d) < a1/(1 + cθ). Since 1/(1 + cθ) > 1/2, the condition
holds for all θ ∈]0, 2π[ if V ′(d) < a1/2 (see [1]).

If we assume that 1/ak = τkq with τ > 0 and q ≥ 0 a
parameter calibrating the interaction range (in a similar way
than with the inverse model (14)), one obtains the condition

0 < τV ′ <

(∑K
k=1 k

−q
)2∑K

k=1 (1− ckθ) k−(q+1)

(∑K
k=1 skθk

−(q+1)
)2 =: τ̃

(θ)
K .

(22)
The mean spacing has only a role through the derivative of
the optimal speed function that is a scale parameter. Only q

is a shape parameter. The expression of τ̃
(θ)
K is comparable

to the one of the inverse model (14), see (15). Here, the time
is proportional to the square of

∑
k k
−q and converges if and

only if q > 1. In this case, the forms of the functions θ 7→ τ̃
(θ)
K

are comparable to the ones obtained with the inverse model

(14) (see in figure 2). The functions K 7→ τ̃K = infθ τ̃
(θ)
K

are also comparable with the difference that the functions
are always increasing, with no damped oscillation. With
the OV model (20), increasing the number of predecessors
in interaction results in an increase of the stability, for any
V ′(d) > 0.

The proportion of variation of the critical time τ̃K as K
varies, denoted ϕ, is not defined when q ≤ 1 since the τ̃K
diverges (it could be equal to 1). For q > 1, the proportion
tends to zero as q increases. As expected, and as the inverse
model (14), see in top figure 5, the influence of K decreases
as the model becomes short range (i.e. as q increases). The
critical time does not depends on q for K = 1. For any K >
1, the times decreases as the q increases. The stability is
negatively influenced by the range q. The constant minimal
value for K = 1 corresponds here to the limit as q increases
of the critical time τ̃K for all K > 1 (limq τ̃K(q) = τ̃1 > 0,
see in bottom figure 7). This means that, oppositely to the
inverse model (14) with u < 1, the OV model can remain
stable at the limit q →∞, for any K.

4. SUMMARY AND CONCLUSION
Linear stability conditions of uniform solutions are calcu-

lated for a second order pursuit model, with K ≥ 1 prede-
cessor in interaction. The framework is general and includes
many models used in pedestrian dynamics as well as in road
traffic flow. The conditions are explored using particular
pedestrian models for which the dynamics are the sum of
an acceleration term to the desired speed, and a repulsive
one with the predecessors, or with the well-known optimal
velocity car-following model. For the pedestrian models, the
acceleration to the desired speed is calculated using a relax-
ation process, while the repulsion is a sum over the prede-
cessors in the interaction. The desired speed is a function
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Figure 7: Top, the proportion of variation of the
critical time with the OV model (20). Bottom di-
mensionless critical time for K = 1, 5, 10, 20 and at
the limit K →∞ (thick line).

of the spacing with the optimal velocity model. Within the
different forms tested, the stability occurs for a small enough
relaxation time τ , smaller than a critical time τK .

When the repulsive force depends solely on the distance
spacing, the critical time converges as K increases, with a
damped oscillation. The role of the parameter K on the
stability threshold is not negligible when the repulsive term
does not decrease sufficiently fast as the distance spacing d
increases (i.e. force f(d) ∝ ecd or 1/dq with low c, q). On the
opposite, the proportion of variation of τK as K varies is low
when the interaction range model are short (i.e. high c or
q parameters). Comparable properties are obtained within
the car-following optimal velocity model if q > 1.

The number of predecessors in interaction in the pursuit
modeling modify the stability conditions. As expected, the
influence of the parameter depends on the form of the model.
It exists finite interaction thresholds for the stability within
distance based models. In a separate paper we will show that
it is generally not the case when the models also depends on
the speeds. The overview developed here could be useful
regarding jam waves formation, for analysis or validation of
pedestrian as well as car-following models.
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