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ABSTRACT
We suggest an efficient algorithm for the vehicle routing
problem with time windows (VRPTW) based on agent ne-
gotiation. The algorithm is based on a set of generic negoti-
ation methods and state-of-the-art insertion heuristics. Ex-
perimental results on well known Solomon’s and Homberger-
Gehring benchmarks demonstrate that the algorithm out-
performs previous agent based algorithms. The relevance of
the algorithm with respect to the state-of-the-art centralized
solvers is discussed within a comprehensive performance and
algorithmic analysis, that has not been provided by previous
works. The main contribution of this work is the assessment
of general applicability of agent based approaches to rout-
ing problems in general providing for a solid base for future
research in this area.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, Multiagent systems

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Vehicle routing problem with time windows, Multi-agent
problem solving, Agent negotiation

1. INTRODUCTION
The vehicle routing problem with time windows (VRPTW)

is one of the most important and widely studied problems
in the the transportation domain. For a comprehensive lit-
erature review refer e.g. to surveys presented by [1, 2]. The
VRPTW is a problem of finding a set of routes from a single
depot to serve customers at geographically scattered loca-
tions. Each customer is visited by exactly one route with
each route starting and ending at the depot. For each route
the sum of demands of the customers served by the route
must not exceed the capacity of the vehicle serving the route
(capacity constraint). Also, the service at each customer
must begin within a given time interval (time window con-
straints). The primary objective of the VRPTW is to find
the minimum number of routes servicing all customers. Usu-
ally a secondary optimization objective is to minimize the to-
tal distance traveled. The primary objective corresponds to
solving the underlying multiple bin-packing problem while

the secondary objective corresponds to a variant of the mul-
tiple traveling salesman problem — both solved in a state
space constrained by the time windows. Traditionally the
VRPTW (together with the closely related pickup and de-
livery problem with time windows - PDPTW) is a problem
area dominated by centralized solvers e.g.[9, 11].

Real world applications of routing algorithms are often
very complex with highly dynamic, heterogenous and po-
tentially non-cooperative or privacy conscious environments
having to be captured and processed, being part of the
higher level transactions e.g. general supply chain manage-
ment processes etc. The multi-agent systems are an emerg-
ing choice for modeling systems with attributes similar to
those mentioned above. An interesting survey on real-world
applicability of agent based approaches in the transportation
domain is presented in [13].

The aim of this paper is not, however, to stress the real-
world applicability of presented algorithm. On the other
hand, we present a thorough assessment of the agent based
algorithm in terms of overall performance in an effort to
establish its position among the state-of-the-art algorithms.

2. RELATED WORK
As already mentioned, a thorough survey of VRPTW al-

gorithms is presented by [1, 2]. Thus we only refer to the
two currently leading state-of-the-art algorithms.

In [9] the authors present an algorithm based on the ejec-
tion pools principle. The algorithm is based on perform-
ing very good unfeasible insertions of customers to indi-
vidual routes, followed by an ejection procedure in which
the feasibility is recovered by ejecting some other customers
from the unfeasible routes. The algorithm equals the best
known cumulative number of vehicles (CVN) of 405 on the
Solomon’s instances with new best known cumulative travel
time (CRT) of 57233.

An improved algorithm presented in [11] further employs
a specific local search strategy guiding the ejections. Also,
a feasible insertion mechanism denoted as squeeze as well
as a search diversification perturb procedure are employed
throughout the solving process boosting the algorithm’s con-
vergence. The algorithm provides for the contemporary best
known CVN of 10290 over the whole extended Homberger-
Gehring benchmark set.

A number of approaches have been suggested for solv-
ing the VRPTW and routing problems in general by means
of multi-agent negotiation profiting from well known multi-
agent based approaches to general task allocation problems
[16]. On simple VRP good results have been reported by an



agent based solver presented by [15]. In general, however,
there has been very few works trying to rigorously establish
the position of agent negotiation in a field dominated by
centralized solvers, with most contributions focusing on the
real-world applicability rather than outright performance.

An agent based algorithm for VRPTW is presented in [5],
built around the concepts of a Shipping Company and un-
derlying Shipping Company Truck. The planning is done
dynamically and is based on the well known contract net
protocol (CNP) accompanied by a ”simulated trading” im-
provement strategy based on finding the optimal customer
exchanges by solving a maximal pairing problem on a graph
representing the proposed exchanges. No relevant perfor-
mance assessment is provided and the algorithm is found to
be sensitive to the ordering of routed tasks.

The algorithm for PDPTW presented by [7] is essentially a
parallel insertion procedure based on CNP with subsequent
improvement phase consisting of reallocating some randomly
chosen tasks from each route. Used cost structure is based
on the well known Solomon’s I1 insertion heuristic [14]. The
performance is assessed on an ad-hoc dataset.

The algorithm for VRPTW presented by [8] is based on
agents representing individual customers, individual routes
and a central planner agent. A sequential insertion proce-
dure based on Solomon’s I1 heuristic is followed by an im-
provement phase in which the agents propose moves gath-
ered in a ”move pool” with the most advantageous move
being selected and performed. Additionally, a route elimi-
nation routine is periodically invoked — which is not well
described in the text. Experimental assessment is based on
Solomon’s instances [14] with a CVN of 436 and CRT of
59281. No runtime information is provided.

In [4] the authors propose a VRPTW algorithm based on
Order agent — Scheduling agent — Vehicle agent hierarchy.
The algorithm is based on a modified CNP insertion proce-
dure limiting the negotiation to agents whose routes are in
proximity of the task being allocated in an effort to minimize
the number of negotiations. Again no relevant performance
information is provided.

3. NOTATION
Let {1..N} represent the set of customers with the depot

denoted as 0. Let a sequence of customers 〈c0, c1, ..cm, cm+1〉
denote a route served by a single vehicle with c0 and cm+1

corresponding to the depot. For each customer ci on the
route let (ei, li, si, di) denote the earliest/latest service start
times (the time window), service time and demand at the
customer respectively. For simplicity, we will use the term
task to denote a customer and all accompanying service in-
formation. Let D denote the vehicle capacity and let ti,j
correspond to the travel time between customers ci and cj
(in an Euclidian space). We use the term partial solution to
denote a solution with some unserved customers.

Given a route 〈c0, c1, ..cm, cm+1〉 let (Ei, Li) correspond
to the earliest and latest possible service start at customer
ci computed recursively according to:

E1 = max (e1, t0,1)

Ei = max (ei, Ei−1 + si−1 + ti−1,i) (1)

and

Lm = lm

Li = min (li, Li+1 − ti,i+1 − si) (2)

As shown in [3], the time window constraints are satisfied
when Ei ≤ Li for all i ∈ 1..m. The capacity constraint is
satisfied when

∑m
1 di ≤ D.

4. ALGORITHM BASED ON AGENT NEGO-
TIATION

As mentioned above, a relevant rigorous assessment of the
key properties of the respective agent-based algorithms e.g.
runtime, convergence, etc. has not been provided by neither
of the previous studies. Thus the main contribution of this
work is: (i) the establishment of a general framework for
agent based approaches based on the state-of-the-art knowl-
edge, (ii) assessment of its algorithmic properties on known
widely used benchmark sets using a performance conscious
prototype implementation and (iii) the discussion of impor-
tant areas for future research in an effort to provide a sound
alternative to traditional solvers.

The presented algorithm is similar in its approach to the
generalizad algorithmic framework for task allocation based
problem solving described in [16, 15]. Thus the presented
framework is generic and can adopt a number of approaches
as far as the actual negotiation/allocation process is con-
cerned. It provides a base for formalizing agent negotiation
based solving approaches to routing problems in general.

A three layer basic architecture features a top layer rep-
resented by a Task Agent, middle layer represented by an
Allocation Agent and a fleet of Vehicle Agents present at
the bottom level of the architecture.

Task Agent acts as an interface between the algorithm’s
computational core and the surrounding infrastructure.
It is responsible for registering the tasks and submit-
ting them to the underlying Allocation Agent.

Allocation Agent instruments the actual solving process
by negotiating with the Vehicle Agents. The negoti-
ation is conducted based upon task commitment and
decommitment cost estimates provided by the Vehicle
Agents.

Vehicle Agent represents an individual vehicle serving a
route. It provides the Allocation Agent with the above
mentioned inputs. These are computed based on local
(private) Vehicle Agent’s plan processing.

Fiugure 1 illustrates the allocation algorithm process im-
plemented by the Allocation Agent. The process is started
given a partial solution σ and a set of unallocated tasks T .
For the dynamic problem variant the set T corresponds to
a one-element set with the actually processed task and σ
represents the partial solution σ at the time of allocation.
In static case the set T corresponds to an ordered set of all
instance tasks, while σ is a partial solution representing a
set of empty routes.

In essence, the allocation process consists of a series of ne-
gotiation interactions between the Allocation Agent and the
Vehicle Agents serving the routes within the partial solution
σ. In various places of the algorithm the Allocation Agent
may require the Vehicle Agents to: (i) estimate the cost of



Input: Ordered set of tasks T , Partial solution σ
Output: Solution σ after task allocation

Procedure allocate(T, σ)
begin
1: Init reallocate counters r[t] := 0 for all t ∈ T ;
2: while (exists(t ∈ T ), r[t] ≤ reallocationLimit)
3: dynamicImprove(σ);
4: Select first t ∈ {t ∈ T, r[t] minimal};
5: I := {v ∈ Insfeas(σ, t), costCommit(t, v)

is minimal};
6: if (I 6= ∅) then
7: Randomly select v ∈ I;
8: commit(t, v);
9: remove t from T ;

10: else
11: r[t] := r[t] + 1;
12: endif
13: endwhile
14: finalImprove1(σ, T );
15: finalImprove2(σ, T );
16: ..
17: return σ;
end

Figure 1: The Allocation Agent main algorithm.

committing to a given task, (ii) estimate the gain result-
ing from dropping some commitment, (iii) identify the most
costly task within their respective routes or (iv) commit to
or decommit from a given task.

The interactions with the Vehicle Agents are represented
by the costCommit(t, v) and commit(t, v) functions (lines 5
and 8) corresponding to the cost estimate of agent v com-
mitting to task t and the actual commitment. From the
Allocation Agent’s point of view these are Vehicle Agent’s
private operations. Thus they may reflect various aspects
and constraints the vehicles need to consider (e.g. load-
ing constraints, vehicle actual position, vehicle shift times,
etc.), potentially reflecting the heterogeneity of the real-
world problem being solved. Similarly, various semantics
of the actual commitments may be introduced (e.g. revo-
cable/irrevocable etc.). The other interactions mentioned
above are carried out within the improvement methods (lines
3, 14 and 15) using the corresponding gainDecommit(t, v),
worstCommitment(v) and decommit(t, v) methods and will
be described later in the text.

The process begins with resetting the reallocate counters
(line 1) and runs in a loop that is terminated when the limit
on unsuccessful allocation retries has been reached for all un-
allocated tasks or until no such tasks exist (line 2). In the
former case the allocation has not been successful. Depend-
ing on the real world problem semantics the Task Agent may
instantiate (dispatch/require) another vehicle and restart
the process using either an empty solution or reusing the
partial solution returned by the previous run.

The dynamicImprove(σ) function (line 2) corresponds
to a particular dynamic improvement method being exe-
cuted iteratively throughout the allocation process. Later
in the text we describe a set of applicable methods e.g.
ε-ReallocateWorst or ReallocateAll. At this stage the ap-
plication of a specific improvement method may enhance

the partial solution σ and therefore: (i) potentially increase
the chance of success for the latter stages of the allocation
process and (ii) possibly modify the solution in a way that
enables allocation of tasks that were not successfully allo-
cated in previous attempts. As the individual routes get
denser, the space for changing the solution decreases. Thus
the ability to improve the solution in the early stages of the
allocation process is an important feature of the algorithm.

The tasks with the lowest number of retries are processed
first in the order in which they are encountered in the set
T (line 4). An auction in which each of the Vehicle Agents
provides a commitment cost estimate for the currently pro-
cessed task is carried out on behalf of the Allocation Agent.
Thus the agents that can feasibly undertake the task (the
set Insfeas) with the best commitment costs are identified
(line 5). In a distributed environment the auction process
is carried out using the CNP protocol. A randomly chosen
agent from this set then commits to the task (lines 7 and
8) and the task is marked as allocated (line 9). In case no
agent can feasibly undertake the task (line 6), the reallocate
counter for the task is incremented (line 11).

The finalImprove1, 2(σ, T ) (lines 14, 15) correspond to
the final improvement strategies being applied. Just like
the dynamicImprove(σ) function these correspond to a cer-
tain improvement method being applied here. However, the
method used for final improvement may differ from the one
used for the dynamic improvement. For example it may be
advantageous to employ a route length conscious improve-
ment method at the end of the allocation process to address
the secondary optimization criteria of the problem. The dif-
ference in signature between the two functions illustrates the
fact that throughout the final improvement we may still try
to allocate the unallocated tasks.

Thus a particular algorithm is instantiated by supplying
the actual fleet of Vehicle Agents with respective cost esti-
mation functions and specifying the individual improvement
methods for the dynamicImprove and finalImprove1, 2
functions.

For the static variant of the VRPTW discussed within
this work, the primary optimization criteria is addressed by
running the allocation process with an initial solution σ cor-
responding to an appropriately small fleet of homogenous
empty vehicles represented by Vehicle Agents. In case the
process fails, a new Vehicle Agent is instantiated and added
to the fleet and the process is restarted.

Within the next sections we present two different variants
of VRPTW Vehicle Agent implementations based on the
state-of-the-art insertion heuristics and three improvement
methods for the static VRPTW problem variant, as well a
theoretically sound setting for the initial size of the fleet.
Several ways in which the set of tasks T can be ordered are
discussed as well.

4.1 Insertion Heuristics
The two Vehicle Agent implementations presented within

this study are based on the well known cheapest insertion
principle. Let cj be the customer associated with the task
t, let 〈c0, c1, ..cm, cm+1〉 be the corresponding route of the
agent v. Let costIns(t, v, i) represent the cost estimate of
inserting t between the customers ci−1 and ci. The cost
estimate for agent v committing to t is thus given by

costCommit(t, v) = argmin
i∈fi(1..m)

(costIns(t, v, i)) (3)



where fi(1..m) represents the set of all feasible insertion
points on the route.

Given an insertion index i, let (Ej , Lj) represent the ear-
liest possible and latest possible service start at cj when in-
serted at index i. The Ej and Lj values can be computed
according to Equations 1 and 2 as

Ej = max (ej , Ei−1 + si−1 + ti−1,j) (4)

and

Lj = min (li, Li − tj,i − sj) . (5)

The insertion is feasible when both the time window con-
straint Ej ≤ Lj and the capacity constraint

(∑m
1 di

)
+dj ≤

D are satisfied. By storing agent’s cumulative demand Dc =∑m
1 di alongside the agent’s plan the capacity constraint can

be checked trivially by verifying that Dc + dj ≤ D.
Given the identified best insertion index i, the actual com-

mitment of the agent v to the task t requires the Ek, k = i..m
and Ll, l = 1..i− 1 values to be updated according to Equa-
tions 1 and 2 as well as the agent’s cumulative demand Dc.

As mentioned above, we evaluated two respective imple-
mentations of the Vehicle Agent’s interface functions based
on two well known insertion heuristics.

4.1.1 Travel Time Savings Heuristic
The travel time savings heuristic is notoriously known to

the routing community. Using the same example as in the
previous section, the insertion cost corresponds to

costInsTT (t, v, i) = ti−1,j + tj,i − ti−1,i. (6)

Let ck denote a customer corresponding to a task t′ already
within v’s plan. The decommitment gain is computed ac-
cordingly as

gainDecommitTT (t′, v) = tk−1,k + tk,k+1 − tk−1,k+1. (7)

The travel time savings heuristic leverages the spatial as-
pects of the problem, with a cost structure corresponding
to the impacts of agent commitments or decommitments on
the travel time of the agents. It has been shown [14, 10],
however, that an insertion heuristic exploiting the temporal
relations of the tasks given by their respective time windows
can yield significantly better results.

4.1.2 Slackness Savings Heuristic
The slackness savings heuristic thus introduces elements

to the cost structure based on the interactions between indi-
vidual time windows constraints caused by their respective
widths and placements within the agent’s route. It is a sim-
plified adaptation of PDPTW heuristic presented by [10] for
the VRPTW problem.

Given ck corresponding to a customer on agent v’s route
from previous examples, let slk = Lk − Ek represent the
slack time at customer ck. An insertion of cj requires the
Lk and Ek values to be updated along the route possibly
reducing the corresponding slk values. Reductions to slack
times correspond to the constraining effects an insertion of a
customer imposes on the rest of the agent’s route. Let sl′j =
Lj −Ej represent the slack time at the inserted customer cj
after the insertion. We denote slj = lj − ej the slack time
at cj prior to the insertion. Given sl′k = L′k − E′k, k = 1..m
being the updated slack times after the insertion, the overall

reduction in route slackness is given by

SLR(t, v, i) =

(
m∑
1

(
slk − sl′k

))
+
(
sl′j − slj

)
. (8)

The i variable in function’s signature corresponds to the
fact the sl′k, k ∈ 1..m and sl′j are particular for the insertion
index i.

The costInsSL(t, v, i) for the slackness savings heuristic is
based on both the spatial and the temporal aspects of the
insertion with

costInsSL(t, v, i) = α.SLR(t, v, i) + β.costInsTT (t, v, i).
(9)

where α and β, α + β = 1 correspond to the respective
weights of the two criteria being considered.

The removalGain(t′, v) is computed using an analogous
approach as

removalGainSL(t, v) = α.SLI(t, v)

+β.removalGainTT (t, v).
(10)

where SLI(v, t) corresponds to a slack time increase result-
ing from updated sl′i values as a result of removing cus-
tomer cj with the updated slack time at customer cj given
by sl′j = lj − ej .

4.2 Improvement Methods
Within the dynamicImprove and finalImprove1, 2 func-

tions each Vehicle Agent decommits from some of its tasks,
based on the particular negotiation method being applied.
Each decommitment is followed by an auction process in
which an agent with the lowest costCommit(t, v) commit-
ment cost estimate commits to the task. Thus the task can
be reinserted to exactly the same position within the same
agent’s plan, to a different position within the agent’s plan
or a different agent can commit to the task. We refer to
a decommitment and subsequent task reinsertion as the re-
allocation of a single task t. In the first above mentioned
case we consider the reallocation unsuccessful as the solu-
tion was not changed. Following three negotiation methods
were considered:

• ReallocateAll : For each Vehicle Agent all of its tasks
are reallocated. The tasks are processed in the order
in which they appear in respective agents’ routes. The
agents are processed in the order in which they are
added to the partial solution σ being processed.

• εεε-ReallocateRandom : For each Vehicle Agent a por-
tion of its tasks corresponding to ε ∈ (0, 1) is real-
located. For ε = 1 this corresponds to the previous
method but for an individual agent the tasks are pro-
cessed in a random order. The order in which the
agents are processed is the same as above.

• εεε-ReallocateWorst : Each agent drops commitments
to a portion of its tasks corresponding to ε ∈ (0, 1).
The tasks processed in decreasing order based on their
respective decommitment gain estimates. The order-
ing is achieved via the worstCommitment agent inter-
face function. For presented implementation this con-
sists of the agent privately invoking the gainDecommit
function for each task within its route and returning
the most costly one.



The interactions between the Allocation Agent and the
Vehicle Agents are carried out using the Vehicle Agent in-
terface functions: costCommit, commit, gainDecommit,
decommit and worstCommitment. As already mentioned,
these are Vehicle Agent’s private operations potentially re-
flecting the real world problem semantics.

4.3 Algorithm Initial Settings
The remaining settings necessary for instantiating a par-

ticular algorithm for the static VRPTW case are: (i) the
count of empty Vehicle Agents in the initial partial solution
σ and (ii) the ordering of the set of tasks T being passed to
the allocation process.

4.3.1 Initial Vehicles Count
As already mentioned, the static VRPTW case primary

optimization criteria is addressed by instantiating a fleet of
empty vehicles and restarting the allocation process with
increased number of vehicles in case of failure until a feasible
solution is found.

A sound setting for the initial vehicles count should cor-
respond to the lower bound number of vehicles for the prob-
lem instance being solved. Such a number can be computed
based on the mutual incompatibilities of the tasks given their
respective time windows and travel times. Two tasks are
incompatible if they cannot be served by a single vehicle,
that is when it is impossible to start the service at either
of the customers at the earliest possible moment and reach
the other customer within the corresponding time window.
The minimal number of vehicles necessary for solving the
instance is bound by the size of the maximal set of mu-
tually incompatible tasks, providing for the time windows
based lower bound on the number of vehicles. Also, the cu-
mulative demand of all customers has to be lower than the
cumulative capacity of all the vehicles combined providing
for a capacity based lower bound on the number of vehicles.

Within this work thus the vehicles count in the initial
partial solution σ is set to the bigger of the two above men-
tioned lower bounds. The size of the maximal set of mu-
tually incompatible tasks is estimated using a graph based
algorithm approximately solving a maximal clique problem
on a graph with edges corresponding to the mutually incom-
patible tasks. The algorithm is described in [10].

4.3.2 Initial Task Ordering
Within the allocate(T, σ) function the task to be pro-

cessed next is chosen based upon the ordering of the set
T . We considered the following settings:

• Most Demand First (MDF): Tasks are ordered de-
creasingly by the volume of their demands, according
to the well known most-constrained-first greedy allo-
cation principle applied to the underlying multiple bin
packing problem.

• Tightest Time Window First (TTF): Tasks are
ordered increasingly by the duration of their time win-
dows following the most-constrained-first approach, this
time based on the time windows of the individual tasks.

• Earliest First (EF): Tasks are ordered increasingly by
the beginning time of their time window. This setting
causes naturally competing tasks to be allocated in
close succession.

During our experimental assessment of the presented al-

gorithm we found that none of the orderings is dominant. To
the contrary each of the orderings performed well on differ-
ent subset of benchmarked instances. Thus finding a fitting
task ordering for a particular problem instance is an inter-
esting problem in its own right, however, it is outside the
scope of this study. Instead, in an effort to appropriately
illustrate the limits of the presented algorithm, we treated
the set of orderings to be used as an additional parameter of
the algorithm, running the allocate(T, σ) function for each
of the orderings and choosing the best result from these runs.

4.4 Complexity Analysis
Given N is number of tasks for a given problem instance

and assuming the number of reallocation retries is constant,
the asymptotic complexity of the allocation process corre-
sponds to

Oclique +Oordering +N ×
(
Odyn +Oalloc

)
+Ofin1,2 (11)

where Oclique is the complexity of estimating the initial Ve-
hicle Agents count, Oordering is the complexity of the initial
ordering of the set of tasks T prior to the allocation process,
Odyn is the complexity of the dynamicImprove function,
Oalloc corresponds to the complexity of the auction process
of finding the agent with the minimal costCommit(v, t).
The Ofin1,2 corresponds to the complexity of the corre-
sponding finalImprove1, 2 functions.

The complexity of Oalloc is inherent to the heuristic be-
ing used. Given m is the number of tasks within agent v’s
route, the complexity of the costCommitTT (t, v) function is
O(m). The costCommitSL(t, v) requires the updated slack
times to be computed for each insertion point thus result-
ing in a complexity of O(m2). As the total number of tasks
in agents’ routes is bound by N , the worst case complexity
of the Oalloc is O(N) for the travel time savings heuris-
tic and O(N2) for the slackness savings heuristic. Similarly
the decommitGain(t, v) function complexity depends on the
insertion heuristic being used with decommitGainTT (t, v)
having an O(1) complexity while decommitGainSL(t, v) be-
ing O(N) in the worst case. The subsequent commit(t, v)
results in O(N) worst case complexity due to the need to
update the Ei and Li values stored alongside the winning
agent’s route having N tasks in the worst case. For the
same reasons the complexity of the decommit(t, v) function
is O(N) as well. The improvement functions correspond to
the application of a particular improvement method. With
ε = 1 all of the methods consist of reallocating all tasks
within the partial solution σ under construction. A single
task reallocation consists of a decommit(t, v) function being
invoked, followed by an auction process and the subsequent
invocation of commit(t, v). Thus the complexity of an im-
provement strategy being applied is given by Oimp = N ×(
Odecommit +Oalloc

)
resulting in O(N2) and O(N3) worst

case complexities for the two presented heuristic. Within
the ε-ReallocateWorst method, the task with the maximal
decommitGain(t, v) value has to be identified prior to each
reallocation. The complexity of such an operation is iden-
tical to the corresponding Oalloc however, so it does not
affect the above mentioned conclusion. Thus Ofin1,2 and
Odyn correspond to the complexity of Oimp for respective
heuristics.

As theOclique = O(N3) [10] andOordering = O(N log(N))
the overall worst case complexity of presented algorithm is



Table 1: Performance of presented algorithm compared to best known results

Type Best Agents Algorithm-B Algorithm-FI Algorithm-DI Algorithm-DIA

All 10695, 5049252 – +1110, +3375926 +703, +2254681 +343, +1962274 +343, +944053
10.4%, 66.9% 6.6%, 44.7% 3.2%, 38.9% 3.2%, 18.7%

100 405, 57233 +31, +2048 +67, +39144 +49, +23847 +24, 20595+ +24, +4040
7.7%, 3.6% 16.5%, 50.6% 12.1%, 36.0% 5.9%, 33.6% 5.9%, 7.1%

200 694, 168307 – +53, +128545 +38, +89906 +21, +83809 +21, +29828
7.6%, 76.4% 5.5%, 53.4% 3.0%, 49.8% 3.0%, 17.7%

400 1380, 389688 – +120, +312576 +73, +220114 +38, +201421 +38, +84058
8.7%, 80.2% 5.3% /56.5% 2.8%, 51.7% 2.8%, 21.6%

600 2065, 823937 – +194, +596673 +127, +411362 +56, +365305 +56, +173849
9.4%, 72.4% 6.2%, 49.9% 2.7%, 44.2% 2.7%, 21.1%

800 2734, 1478704 – +278, +881897 +180, +564243 +89, +482700 +89, +221219
10.2%, 59.6% 6.6%, 38.1% 3.3%, 32.6% 3.3%, 14.7%

1000 3417, 2131385 – +398, +1417088 +236, +945209 +115, +809443 +115, +431058
11.6%, 66.5% 6.9%, 44.3% 3.4%, 38.0% 3.4%, 20.2%

C1 2914, 952995 – +470, +490242 +333, +326360 +151, +246114 +151, +131224
16.1%, 51.4% 11.4%, 34.2% 5.2%, 25.8% 5.2%, 13.8%

C2 895, 443144 – +158, +456219 +113, +283553 +48, +246208 +48, +90111
17.7%, 103.0% 12.6%, 64.0% 5.4%, 55.6% 5.4%, 20.3%

R1 2881, 1121497 – +136, +712998 +67, +482043 +48, +386052 +48, +263126
4.7%, 63.6% 2.3%, 43.0% 1.7%, 34.4% 1.7%, 23.5%

R2 600, 720454 – +18, +799141 +7, +594375 +3, +564348 +3, +190399
3.0%, 110.9% 1.2%, 82.5% 0.5%, 78.3% 0.5%, 26.4%

RC1 2801, 1064510 – +218, +483182 +120, +304586 +65, +267166 +65, +166324
7.8%, 45.4% 4.3%, 28.6% 2.3%, 25.1% 2.3%, 15.6%

RC2 603, 746602 – +110, +434145 +63, +263764 +28, +252385 +28, +12792
18.2%, 58.1% 10.4%, 35.3% 4.6%, 33.8% 4.6%, 1.7%

O(N3) for the travel time savings heuristic and O(N4) for
the slackness savings heuristic.

5. EXPERIMENTAL EVALUATION
The experiments were carried out using the set of well-

known Homberger-Gehring benchmark instances [6]. To pro-
vide reference to previous agent-based approaches we also in-
cluded the original Solomon’s instance set [14], sharing the
same basic attributes as the formerly mentioned set. Thus
the complete benchmark set consists of 6 sets of instances
with 100, 200, 400, 600, 800 and 1000 customers respectively,
with 60 instances in each set (except Solomon’s with 56 in-
stances). For each set there are 6 instance types provided —
the R1, R2, RC1, RC2, C1, and C2 type, each with a slightly
different topology and time windows properties. For C1 and
C2 types the customer locations are grouped in clusters, un-
like the R1 and R2 classes where the customers are randomly
placed. The RC1 and RC2 instance types combine the pre-
vious two types with a mix of both random and clustered
locations. The C1, R1 and RC1 also differ from C2, R2 and
RC2 in terms of the scheduling horizon, the former having
a shorter horizon resulting in routes of about 10 customers
on the average, the latter having a longer horizon providing
for routes of around 50 customers.

The reason for using these particular widely used bench-
mark sets was to provide a relevant comparison with the
state-of-the-art centralized solvers that has been missing
from previous agent-based studies. Therefore, the inclusion
of the extended Homberger-Gehring benchmarks is one of
the unique assets setting this work apart.

5.1 Algorithm Configurations
We examined four different settings for the suggested al-

gorithm. The simplest Algorithm-B setting refers to a base-
line algorithm not employing neither the dynamicImprove
nor the finalImprove1, 2 functions. Such a setting corre-
sponds to the simple parallel cheapest insertion procedure.
Algorithm-FI extends the previous setting by employing the
finalImprove1 function using one of the presented negoti-
ation methods. The Algorithm-DI refers to a setting with
both the dynamicImprove and finalImprove functions be-
ing used. For all three mentioned settings the cost struc-
ture used throughout the whole algorithm corresponds to the
slackness savings heuristic. We present these configuration
to provide an insight into the role of the dynamicImprove
and finalImprove functions within the solving process.

The full fledged algorithm as presented within this study is
denoted as Algorithm-DIA. It further extends the Algorithm-
DI setting with a finalImprove2 function using the route
length savings heuristic in an effort to address the secondary
optimization criteria.

We used the ReallocateAll improvement method for the
finalImprove1, 2 functions in all applicable settings. With
respect to the dynamicImprove function, we tested all three
presented negotiation methods in the applicable Algorithm-
DI and Algorithm-DIA settings. The presented results cor-
respond to the best of these three runs.

We used ε = 0.3 setting for the ε parameter affecting two
of the three presented improvement methods. With respect
to the α and β parameters affecting the slackness savings
heuristic cost structure we used α = β = 0.5 setting. The



Table 2: Equalled best known solutions per instance
types

Instance VN VN and RT RT Error on
Type Equal Equal VN Equal

All 48.6% 8.1% 24.6%

C1 33.9% 18.6% 9.9%

C2 51.7% 27.6% 9.9%

R1 30.6% 1.6% 28.4%

R2 95.1% 1.6% 26.7%

RC1 6.9% 0.0% 10.9%

RC2 72.4% 0.0% 29.3%

choice of these particular values is discussed later in the text.

5.2 Evaluation of Results
The performance of our algorithm is illustrated by Ta-

ble 1. Two commonly used metrics of quality are presented:
(i) the cumulative number of vehicles (CVN) and (ii) the cu-
mulative travel time (CRT). The ”Best” column presents the
best known CVN and CRT for given set of instances taken
from [11, 12]. The rest of the columns corresponds to the
absolute and relative errors in both criteria listed for previ-
ous agent based studies [8] (the Agents column) and for the
four settings of the presented algorithm. The results are pre-
sented for individual instance sizes (”100”corresponds to the
Solomon’s instances, while the ”200 – 1000” sets correspond
to the Homberger-Gehring instances) as well as for individ-
ual instance types that are common among both benchmark
sets. Thus, for example, the second row of the last column
shows that on Solomon’s instance set the Algorithm-DIA
setting achieved a CVN of 24 more than the CVN of the
best known solutions, with a CRT of 4040 higher, resulting
in a 5.9% and 7.1% respective relative errors.

Table 2 further illustrates the success of the full Algorithm-
DIA settings in terms of being able to match the best known
solutions in terms of: (i) the number of vehicles (VN), (ii)
both criteria (VN and total travel time - RT). Complement-
ing this information is the relative error in RT for the solu-
tions matching the best known VN.

5.2.1 Overall Quality Analysis
In overall, the presented algorithm in the full Algorithm-

DIA setting achieved a 3.2% CVN and 18.7% CRT average
relative error when compared to the best known solutions.
The algorithm was able to match the best known solutions in
48.6% in terms of the primary VN optimization criteria. In
8.1% of the cases both VN and RT criteria of the best known
solutions were achieved. The average relative RT error for
the VN best known matching instances was 26.4%. The
algorithm outperforms all previous agent-based approaches,
achieving a CVN of 429 compared to 436 presented by [8]
on the Solomon’s instances. The algorithm sets new best
known solutions for agent-based approaches on the extended
Homberger-Gehring datasets.

The performance is consistent across all instance sizes.
The difference in performance between the Solomon’s and
the extended Homberger-Gehring datasets corresponds to
the fact that slower solvers are typically not tested on the
extended datasets. Such is the case, for example, with the

Table 3: Insertion heuristic relative errors over 200
customer instances

Algorithm setting Slack savings Travel time savings

Algorithm-B 7.6% 25.1%

Algorithm-FI 5.5% 11.1%

Algorithm-DI 3.0% 5.2%

previously presented agent-based algorithm featuring within
the comparison. The results achieved on both datasets thus
suggest, that an agent based approach to VRPTW is a sound
alternative to the traditional centralized solvers.

5.2.2 Dynamic and Final Improvements Analysis
The results for the individual algorithm settings illus-

trate the significance of both the dynamicImprove and the
finalImprove1, 2 functions. With the Algorithm-B setting
there is no possibility to recover from a potentially bad allo-
cation taking place in the earliy stages of the allocation pro-
cess. For example, an early allocation may render some of
the subsequent allocations infeasible due to the time window
or capacity constraints, effectively preventing some parts of
the search space to be traversed. In overall the Algorithm-B
setting achieved an error of 10.4% in the VN criteria.

The Algorithm-FI setting extends the Algorithm-B set-
ting by allowing some exchanges of the tasks within and
between the routes during the final stage of the allocation
process. At this stage, however, as a result of previous allo-
cations, the partial solution σ is already tightly constrained.
Thus the chance of reallocating a task already in σ is cor-
respondingly small, resulting in a relative VN error of 6.6%
across all instances.

With an average relative VN error of 3.2% the Algorithm-
DI setting significantly outperforms the Algorithm-FI set-
ting. Arguably this is due to the fact that the improve-
ments are performed dynamically throughout the allocation
process on smaller and therefore less constrained partial so-
lutions. The slackness savings heuristic specifically tries to
minimize the constraining effects of the insertions. There-
fore, the Algorithm-DI setting dynamically improves the
partial solution σ in an effort to increase the chance of future
advantageous allocations or reallocations being performed.

Finally, by employing the finalImprove2 function, the
Algorithm-DIA traverses the feasible neighborhood of the
resulting solution σ using a travel-time driven cost struc-
ture in an effort to find a local travel-time minima. A suc-
cess of such an adaptive strategy is illustrated by reducing
the 38.9% relative RT error from the previous Algorithm-DI
setting to only 18.7%.

There is a notable difference in performance of Algorithm-
B and Algorithm-FI settings on clustered (C1, C2, RC1,
RC2) and non-clustered (R1, R2) instances. The customers
in clusters are temporally and spatially very close while the
distances between clusters are much higher. A good solution
is thus characterized by minimizing the number of travels
between the clusters. In an early partial solution σ where
not all customers are yet known the Algorithm-B may easily
make very bad decisions like having a vehicle visit more clus-
ters — a situation from which the final improvement of the
Algorithm-FI cannot recover. The dynamic improvements
performed within the Algorithm-DI setting help to counter
this to some extent.



Figure 2: Improvement methods reallocation success

Table 4: Relative errors for insertion heuristics and
individual orderings

Algorithm-B Algorithm-DI

Ordering Travel time Slack Travel time Slack

MDF 46.0% 27.9% 14.6% 9.5%

TTF 28.2% 18.5% 11.4% 8.7%

EF 25.7% 12.3% 8.5% 6.4%

BEST 23.1% 7.6% 5.5% 3.0%

RAND 36.3% 23.0% 14.8% 9.7%

5.2.3 Insertion Heuristics Analysis
The commitment/decommitment cost structure provided

by the insertion heuristics is the sole input for the other-
wise abstract allocation process. Table 3 lists relative er-
rors of the two presented heuristics measured for the 200
customer benchmark set. The results show that the slack-
ness savings heuristic outperforms the traditional travel time
savings heuristic in all three relevant algorithm settings (the
Algorithm−DIA setting actually uses both heuristics). The
difference is most pronounced with the Algorithm-B setting
while being less pronounced in Algorithm-FI and Algorithm-
DI settings. Thus, interestingly, the improvement methods
are able to exploit both of the heuristics with similar success.
The results correspond to α = β = 0.5 slackness savings
heuristic parameters that has proved to be the most effi-
cient in the computational tests that are outside the scope
of this study.

Not surprisingly the slackness savings heuristic proved
to be significantly slower of the two, with runtime in the
Algorithm-DI setting being approximately 3 times longer.

5.2.4 Ordering Sensitivity Analysis
The relative errors for various initial orderings of the set

of tasks T corresponding to the 200 customer benchmark
set are listed by Table 4. The results for both the base-
line Algorithm-B and the full-fledged Algorithm-DI settings
and for each of the used insertion heuristics are presented.
The BEST ordering row corresponds to the best results of
MDF, TTF and EF orderings, while the RAND ordering
corresponds to a baseline random ordering of the tasks.

The results suggest that neither of the proposed order-
ings is dominant in terms of outperforming the remaining
two across the whole range of instances. To the contrary,
the fact that the BEST results are significantly better than

the results of either of the orderings proves that each of the
orderings performs well on a different subset of instances.
The results thus suggest that the individual instances differ
in their nature, potentially favoring some particular order-
ing. For example, the MDF ordering attributed for 8 wins
across the 60 measured instances suggesting that these may
be the instances where leveraging the capacity aspect is ben-
eficial, while in the rest of the cases the best results were
achieved using orderings leveraging the temporal aspects of
the problem. Finding an ordering that is fitting for a par-
ticular problem instance is an interesting problem in its own
right that has not yet been addressed. To overcome this, we
treated the set of orderings to be used as an additional pa-
rameter of the algorithm, running the allocate function for
each ordering and choosing the best result from these runs.
The presented results and runtimes correspond to the MDF,
TTF and EF orderings being used.

The results further show that out of the two heuristics
the slackness savings heuristic is clearly the less sensitive to
the ordering of the two in the baseline Algorithm-B setting.
In the Algorithm-DI setting the difference is less marked.
This suggest that the dynamic improvement methods are
successful in offsetting the sensitivity of used heuristic to
ordering, a result that supports previous findings of [7].

5.2.5 Improvement Methods Analysis
We analyzed the respective performance of individual im-

provement methods used within the dynamicImprove func-
tion of the Algorithm-DI setting varying the ε parameter
where applicable. Surprisingly, beginning with ε = 0.3, the
quality of the resulting solution did not improve with big-
ger ε while the runtime did increase linearly. For the final
improvement, we found the ReallocateAll method to achieve
marginally better results. In overall, we found that the num-
ber of reallocations does not have a strong positive influence
on the quality of resulting solution.

Figure 2 illustrates the number of reallocations performed
within the individual calls of the dynamicImprove func-
tion for a 200 customer instance and the runtime in which
they occurred within an invocation of the allocate func-
tion. Note that these results correspond to the slackness
savings heuristic based implementation of the costCommit
and costDecommit functions. Note also that the y axis is
presented in logarithmic scale. The three types of points
correspond to: (i) reallocations of tasks between routes, (ii)
reallocations of tasks within a single route and (iii) reallo-
cations that failed to find a feasible improving allocation for
the task being reallocated. The three graphs correspond to



Figure 3: Results for individual algorithm settings
for 1000 customer instances

the three presented improvement methods with ε = 0.3 for
the two ε methods. The rising curve shape for the number of
failed reallocations corresponds to the fact that throughout
the process more tasks are being allocated and processed by
the respective improvement methods.

The results suggest that neither of the methods is domi-
nant terms of reallocation success. Contrary to our expec-
tations, the ε-ReallocateWorst method did not succeed in
selecting the most likely to be reallocated tasks. Further-
more, the number of successful reallocations drops towards
the end of the solving process, suggesting that the cost struc-
ture provided by the slackness savings heuristic together
with the proposed improvement methods get stuck in lo-
cal optima. The inability to further transform the solution
towards higher quality is arguably due to the fact that the
number of feasible task reallocations drops rapidly as the
solution gets denser.

The presented negotiation methodology only allows for
traversing the solution space of partial solutions that are
feasible in terms of time window and capacity constraints.
We argue that for the negotiation based methodology to
achieve stronger results than the arguably very promising
results presented within this study, a method allowing for
traversing also the infeasible space or performing more com-
plex moves would have to be developed. Such a method-
ology could be embedded to the presented general solving
architecture in form of some backtracking strategy and ac-
companying ejection based heuristic, allowing for temporal
infeasibility of individual routes.

5.2.6 Runtime and Convergence Analysis
The convergence of Algorithm-B, Algorithm-FI and the

full Algorithm-DIA settings is illustrated by Figure 3. The
results correspond to the 1000 customers benchmark set.
Note that the x-axis uses a logarithmical scale. The results
confirm that the quality and robustness of the algorithm in-
crease with more complex setting being used with obvious
penalty in terms of runtime. Also the difference in terms of
runtime between individual algorithm settings is dramatic.
Interestingly, in many cases the very short-running settings
produce a very good quality results matching even the best
known solutions. This feature of the algorithm can be ex-
ploited by running various strategies in parallel competition
returning an improving sequence of results over time. Based
on previous evidence, using a wide set of task orderings in
combination with the shorter running solvers might, for ex-
ample, produce a very efficient and robust strategy with
ideal parallelization features.

The comparison in terms of runtime of the full Algorithm-
DIA setting with the currently leading algorithms is pre-

Table 5: Cumulative and worst runtimes for indi-
vidual instance sizes

Nagata [11] Lim [9] Algorithm-DIA

Size Avg. RT Avg. RT Avg. RT Worst RT

200 1 min 10 min 3 s 13 s

400 1 min 20 min 22 s 3 min

600 1 min 30 min 2 min 19 min

800 1 min 40 min 6 min 47 min

1000 1 min 50 min 8 min 74 min

sented by Table 5. The average runtime-per-instance as
well as the worst runtime recorded by presented algorithm
is listed for individual instance sizes of the extended bench-
mark sets. The results correspond to a C++ implemen-
tation run on AMD Opteron 2.4G system for [11], a Java
implementation run on a Intel Pentium 2.8G system for [9]
and a normalized (single threaded) runtime on a 4G RAM
AMD Athlon 2G Gentoo system running the 64-bit Sun JRE
1.6.0 22. The approach to parallelization is not mentioned
in neither [9] nor [11]. Also, the secondary travel time mini-
mization criteria is not addressed by [11]. We must note,
however, that: (i) compared algorithms outperform pre-
sented algorithm in terms of CVN and (ii) are not com-
putationally bound. Therefore to be able to draw a more
relevant conclusions, settings with similar solution quality
would have to be compared.

With respect to previously presented agent-based algo-
rithms, no comparable data were provided by any of the
previous works. The likely cause for that is that agent-
based approaches typically rely on agent execution platforms
corresponding to a loosely coupled distributed environment
(JADE etc.) making them extremely inefficient.

The results show that there is a striking difference between
the average and the worst runtime for the presented algo-
rithm. The worst results correspond to the instances where
the initial vehicles count estimation was much lower than the
VN of the particular solution being found. In such a case
the allocate function is restarted with sequentially increas-
ing empty vehicles count until a feasible solution is found.
The effect is most pronounced given an unfitting ordering
is used for the particular run. Also, the effect increases the
size of the instance. Looking back at Figure 3, the above
mentioned observation is clearly illustrated. Apparently, for
each respective algorithm setting, the runtimes for the indi-
vidual results increase with decreasing quality of the corre-
sponding solutions. We suggest that an improved restarts
strategy could be developed, addressing this shortcoming.
Such a strategy could benefit from performing variable size
steps based upon analysis of the partial solution at the end
of last step — the number of remaining unallocated tasks in
particular. Also the set of orderings could be pruned based
on their respective performance in shorter running settings
e.g. Algorithm-B, Algorithm-FI. Another option is a restart
strategy reusing the partial solution σ from the previous step
(keeping the agents’ commitments), but such an approach
didn’t prove successful in our testing.

The last interesting conclusion concerns the overall con-
vergence attributes of the presented algorithm. Considering
the previously discussed high ratio of unsuccessful realloca-
tions, the above mentioned high number of restarts and the



fact that the implementation is a prototypal one, rather than
a fully optimized one, the listed runtimes actually corre-
spond to a very limited portion of the search space being tra-
versed in comparison with the competing algorithms. This
suggests that the algorithm navigates through the search
space very efficiently providing for a very good convergence.
This finding provides further evidence of the potential of
the method and suggests that further research is needed to
unlock its full potential.

6. CONCLUSION
This paper describes an algorithm for the VRPTW based

on agent negotiation. The performance of the algorithm is
evaluated using the well known benchmark sets in an ef-
fort to assess the relevance of agent based approaches to
routing problems in general. The algorithm outperforms all
previously presented agent based algorithms, being also the
first agent based algorithm to be tested using the extended
benchmark sets typically used by centralized performance
optimized solvers. Experimental results show that the algo-
rithm is able to match the best known solutions achieved by
the centralized solvers in 48.6% of the cases with an average
relative error of 3.2% across all tested instances with respect
to the VRPTW primary optimization criteria.

The algorithm uses a generic negotiation based task al-
location process embedded in a multi-agent hierarchy that
promises to be flexible in terms of capturing the semantics
of typically heterogenous, dynamic and privacy conscious
systems modeled within the transportation domain. For
purposes of this paper, the adaptation to the VRPTW is
achieved by supplying specific cost estimation functions for
agent commitments and decommitments that can be easily
extended or modified.

A comprehensive analysis of the algorithm is presented
suggesting promising future research opportunities in: (i)
modifying presented allocation process to employ more com-
plex moves or allow for traversing non-feasible search space,
(ii) developing a method to identify the best fitting order-
ing for a particular VRPTW instance, (iii) improving the
restarts strategy for the VRPTW case and (iv) adapting
the system for more challenging problem variants exploiting
its inherent flexibility.
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Abstract architecture for task-oriented multi-agent
problem solving. Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on,
41(1):31 –40, January 2011.


