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ABSTRACT
Traffic congestion is a serious problem in urban life causing
social problems such as time loss, economical loss, and envi-
ronmental pollution. Therefore, we propose a multi-agent-
based traffic light control framework for intelligent transport
systems. For smooth traffic flow, real-time adaptive coordi-
nation of traffic lights is necessary, but many conventional
approaches are of the centralized control type and do not
have this feature. Our multi-agent-based control framework
combines both indirect and direct coordination. Reaction
to dynamic traffic flow is attained by indirect coordination,
and green-wave formation, which is a systematic traffic flow
control strategy involving several traffic lights, is attained by
direct coordination. We show the detailed mechanism of our
framework and verify its effectiveness through comparative
evaluation through simulation.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Distributed Arti-
ficial Intelligence

General Terms
Algorithms, Performance

Keywords
ITS, intelligent traffic control, multi-agent coordination

1. INTRODUCTION
Traffic congestion in urban areas causes serious problems
in terms of economic loss, time loss, and environmental
pollution. Major solutions to eliminate traffic congestion

are intelligent car navigation [5][8] and traffic light control.
The former technology, such as the Vehicle Information and
Communication System (VICS) in Japan, and the Probe-
Car Information System, has progressed rapidly. VICS is an
innovative information and communication system that en-
ables one to receive real-time road traffic information, This
information is edited and processed by the VICS Center and
displayed on the navigation screen in text or graphical form.
The Probe-Car Information System uses cars as mobile sen-
sors for collecting data, which are sent to a central server to
produce new information for avoiding congestion and pro-
viding efficient navigation.

Even though computer-based traffic light control systems
are based on centralized control, they have disadvantages.
Therefore, we focus on improving such traffic light control
systems.

The basic steps in the traffic light control design process is
deciding on phases and calculating the control parameters.
The various traffic flows at an intersection are allowed to
move in phases. Each phase of a signal cycle is devoted to
only one traffic flow. The control parameters define the tim-
ing of switching phases. The major control parameters are
”cycle length”, ”clearance”, ”split” and ”offset” in the traffic
light control system.

• Cycle length is the time required for one cycle of traffic
light phases (e.g. green -> yellow -> red). Figure 1
shows an example of this.

• Clearance is the time it takes to clear an intersection
area.

• Split is the percentage of cycle length allocated to each
traffic light phase.

• Offset is the time lag between green indications of adja-
cent traffic lights. Figure 2 shows an example of offset
control (green-wave formation).

Traffic congestion mainly begins at intersections. Traffic
flow fluctuates dynamically during morning and evening rush



Figure 1: Example of phases and cycle

Figure 2: Example of offset control

hours. Moreover, unexpected events, such as road accidents,
and unexpected popular events dynamically cause traffic
congestion. Therefore, it is important to be able to appro-
priately align these parameters at any time.

The current traffic light control systems can be classified into
two types; static, which use the above parameters calculated
beforehand, and dynamic, in which traffic flow is monitored
and the values of the parameters are adapted. These param-
eters are aligned dynamically (as in MODERATO in Japan
and OPAC[4] in US). In the static type, several parameter
sets are calculated beforehand according to each traffic flow
situation during rush hour, daytime or nighttime. While this
type is effective in envisioning changes in traffic flow, it can-
not deal with unexpected situations. In the dynamic type,
traffic flow is detected by sensors installed along roads, and
traffic lights are controlled based on this sensor information.
However, current systems are of a centralized control type,
which is unsuitable for the management of dynamic complex
traffic flow.current systems are of a centralized control type

In MODERATO, real-time information is not utilized appro-
priately. This is mainly due to its algorithm, which selects
a favorable parameter set matched to each traffic flow situ-
ation from the several parameter sets calculated beforehand
by off-line simulation.

For offset control in current traffic control systems, when
one-way traffic flow becomes quite high during the morn-
ing rush hour from residential areas to urban areas, green-
wave offset control (through-band offset control) is adopted.
In green-wave offset control, offset timing of several traffic
lights are aligned to allow each car to move without stop-
ping at a traffic light. Ideally, the group of traffic lights
that make up the green-wave control should be organized

dynamically. However, in the current systems, these groups
are pre-defined, and it is impossible to freely construct the
green-wave control anywhere.

The essential factor for next generation traffic light control
systems are real-time adaptability, to be able to quickly react
to the dynamic traffic flows. To achieve this, we believe that
a framework in which each traffic light is autonomous and
coordinates with others to react to dynamic traffic flow is
necessary.

We propose a traffic light control framework based on a
multi-agent paradigm to react to dynamic traffic flow, de-
crease the number of cars stopping at a red light, and adap-
tively form a green-wave control group. An agent is imple-
mented at each intersection for controlling the several traf-
fic lights that belong to that intersection. Our framework
combines indirect and direct coordination. That is, reaction
to dynamic traffic flow is attained by indirect coordination
using a spring model based on stigmergic dynamics, and
green-wave organization is achieved by direct coordination.

In section 2 we discuss related studies and explain the major
control parameters of traffic lights in Section 3. In Section 4,
we discuss our proposed framework and show the evaluation
results. We conclude our discussion in Section 5.

2. RELATED STUDIES
One approach for obtaining optimized parameters is using
a genetic algorithm (GA). Takahashi et al. proposed an
offset optimization model using a GA [13]. In this model,
offset values of traffic lights were used to represent a chro-
mosome. Sánchez et al. proposed another parameter opti-
mization model using a GA [10]. In this study, optimized
cycle length, clearance time, split, and offset could be calcu-
lated. Mikami et al. proposed a multi-agent-based model in
which reinforcement learning is used to optimize the param-
eters [6]. In this model each agent performs reinforcement
learning independently, and each parameter set, which is cal-
culated by each agent, is aggregated to the central control
module. Then the central control module uses a GA to find
the optimized parameter set. Balaji et al. also proposed
a multi-agent-based centralized optimization methodology
using a GA [1]. Kosonen et al. proposed a multi-agent
real-time traffic light control system using fuzzy inference,
and Schmöcker et al. proposed a multi-objective traffic light
control method using fuzzy logic [12]. The membership func-
tions of fuzzy logic are optimized using a GA executed in a
microscopic traffic simulator. These GA-based approaches
are attractive when there are many parameters to be opti-
mized, but require large calculation cost and time until con-
vergence. A more optimized solution can be derived with
centralized calculation approaches, but these approaches do
not exhibit real-time adaptability.

Another approach is a stochastic control model. Yu et al.
achieved traffic light parameter optimization as a decision
making problem of a controlled Markov process [14]. They
say that the stochastic approach is suitable for the traffic
light control problem, especially under the conditions of high
volume but not saturated traffic demand. However, when
the size of the road network is increased, the dimension num-
ber of the proposed control framework increases, and more



memory space and computation time become necessary.

On the other hand, there are several related studies based on
the distributed approach to achieve real-time adaptability.
Nishikawa proposed an offset control algorithm based on the
phase oscillator model [9]. In this study, the functions of
each traffic light were modeled as oscillators and traffic lights
were coordinated through synchronization of each oscillator.
Satoh proposed a split control model based on the spring
model [11]. In this study, traffic flow was assumed to be the
same as the force of a spring. The split ratio was modeled as
the force balance of a spring. Coordination between adjacent
traffic lights was also modeled as a spring model. Traffic
lights were connected with a spring, and the split ratio of
traffic light was assumed to be the same as the force of a
spring. Oliveira proposed a multi-agent-based split control
approach [3]. Each agent calculates the congestion degree
independently and controls its split value to decrease the
total congestion degree.

These conventional approaches are all attractive, but their
performances were evaluated using quite simple and small-
scale road environments, and most of them concerned about
only a few parameters. Therefore, it is difficult to apply
them to more complex and large-scale environments.

3. MULTIAGENT CONTROL
In this chapter, we describe our multi-agent based traffic
light control framework, our proposed split control model
with spring model by indirect coordination, and our pro-
posed offset control and green-wave formation model by di-
rect coordination. As for agent based approach, useful sur-
vey was done in [2].

Generally, indirect coordination exhibits adaptability and
low coordination cost but optimality cannot be ensured. On
the other hand, direct coordination exhibits optimality but
requires high coordination cost and longer convergence time
than indirect control. A traffic light control consists of split
and offset controls. To quickly reduce the waiting queue
of cars at an intersection, control of the split value of each
traffic light is necessary. Therefore, real-time adaptability
is necessary for split control. On the other hand, to form
a green-wave control group with several traffic lights, some
deliberate coordination is necessary. Therefore, in our pro-
posed framework, split control is attained using the indirect
type of coordination, and offset control is attained using the
direct type of coordination.

For split control, each agent calculates the split value au-
tonomously by referring waiting queue of cars at a traf-
fic light it directly controls. Each agent does not interfere
with neighbor agents. That is, there is no direct coordina-
tion cost; therefore, real-time control can be achieved. On
the other hand, functions of each agent indirectly affect its
neighbor agents through the change of traffic flow. This
indirect coordination is generally called ”stigmergy1”.

For offset control in current traffic control systems (e.g.
MODERATO), several groups that may perform green-wave

1The term ”stigmergy” was introduced by French biologist
Pierre-Paul Grass in 1959 to refer to termite behavior.

control are pre-defined, so dynamic formation is impossible.
On the other hand, in our proposed framework, green-wave
control formation can be dynamically established anywhere.

In normal daily traffic flow, each agent functions based on
the indirect coordination mode. However, when the traffic
flow balance collapses near certain agents, the agents change
their coordination mode to direct coordination mode to form
a green-wave control formation. Therefore, such direct co-
ordination of an agent group can be seen as interfering with
the indirect coordination of agents. However, indirect co-
ordination has an advantage against such interference. The
important point is affinity of both coordination types.

Cycle length and clearance were not considered in most re-
lated studies. However, both parameters also affect traffic
flow; therefore, we focused on both parameters. We adopted
the Webster cycle length approximation formula, which is
also adopted in MODERATO (details are discussed in Sec-
tion 5). Clearance length is a constant value.

3.1 Definition of agent
Agent Ai, which controls the traffic lights of intersectioni,
collects the following information:

• Distance li,j between intersectioni and its directly
connected intersectionj .

• Traffic flow (number of cars) per unit time intersectioni

to intersectionj , which is defined as p(i,j).

• Average velocity of cars heading from intersectioni to
intersectionj is defined as vi,j .

• Ci is the cycle length, Si is the split value, and Oi is
the offset value of intersectioni.

• Ti shows the start time of Ci, and current step count
is ti.

• Total traffic flow into intersectioni is defined as P(i) =∑
j
p(j,i)

Traffic flow p is calculated based on the total traffic flow
of the last five cycles that showed the best effect from the
results from a pre-exploratory experiment. Each agent cal-
culates and updates these values at the beginning of every
cycle.

3.2 Cycle length control
Cycle length is controlled depending on whether each agent
performs direct or indirect coordination. When the agent
is in indirect coordination mode, cycle length is calculated
using Webster’s equation.

Co =
1.5L+ 5

1− λ
(1)

where Co is the optimal cycle length, L is the clearance
length, and λ is the ratio of p to the saturation traffic flow.

On the other hand, when the organization of green-wave
formation, which is formed by several agents, becomes nec-
essary, the coordination mode of these agents becomes di-
rect, and the cycle length of these agents becomes the same.
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Figure 3: 2 phase spring model

Details of cycle length calculation are discussed in Section
3.4.

3.3 Split control by indirect coordination
Each agent at an intersection observes the traffic flow of each
road connected to the intersection during the green phase of
each road. The agent then calculates the split ratio based on
the proposed spring model so as to equalize the traffic flow
of each road. At this point, each agent calculates its split
value by using only local information and does not directly
interact with others, exhibiting real-time characteristics and
low communication cost.

Now, we consider a crossroad and 2-phase traffic light (red
and green) in this intersection. The split ratio of one of the
two phases phase1 is defined as split[0], and the other phase
phase2 is defined as split[1] = 1− split[0].

Figure 3 shows a diagrammatic illustration of our spring
model. Traffic flow is considered as force. The spring equa-
tion is defined as.

K(C − Csplit[0]) +D = K(C − Csplit[1]), (2)

where C is the cycle length, D is the difference in traffic flow
between phase1 and phase2, and K is the spring constant,
which is defined as the number of cars waiting for the red
light phase during one step.

split[0] =
(KC +D)

2KC
(3)

Therefore, we can calculate split[0] and then split[1]. How-
ever, Eq. 3 may give a split value of split[0] ≥ 1 or split[1] ≥
1, where split ≥ 1 means that the traffic light cannot change
the phase. Therefore, we define the maximum value of split
as 0.9 and the minimum value as 0.1.

3.4 Offset control by direct coordination
The offset is calculated based on the traffic flow between two
adjacent intersections. When the condition for construct-
ing the green-wave formation is satisfied for a certain agent,
the agent tries to start direct coordination with its adja-
cent agents by sending them a coordination request mes-
sage. First, we define three agent modes. Then we explain
the offset equations and show the sequence of green-wave
formation.

3.4.1 Agent’s mode
Each agent consists of three types of modes depending on
the condition of its adjacent agents and amount of traffic
flow it controls.

• Independent mode: An agent does not interact with
the green-wave formation.

• Master mode: An agent in this mode becomes the cen-
ter of coordination and is called the ”master agent”.
When the construction of the green-wave formation is
satisfied for a certain agent, that agent’s mode changes
from independent to master.

• Fellow mode: When a certain agent accepts the coor-
dination request from the master agent, the mode of
this agent changes from independent to fellow.

3.4.2 Offset calculation
The offset is calculated based on the difference between in-
bound and out-bound traffic flow on the road between two
adjacent intersections. When the difference between in- and
out-bound flows reaches a certain value, the offset is calcu-
lated to give priority to the more congested direction.

We define pl as p(i,j) or p(j,i), whichever is the larger, and
ps as p(i,j) or p(j,i), whichever is the smaller. The notations
γ and δ are thresholds of traffic flow (γ is bigger than δ).
For pl

ps
≥ γ, we consider only the more congested direction,

and the relative offset value Or is defined as

Or =
l(i,j)

vl
, (4)

where vl is the velocity of the more congested traffic flow. On
the other hand, in case of γ >

pl
ps

> δ ≥ 1, it is necessary to
consider both flow directions. Therefore, the relative offset
value Or is defined as

Or =
l(i,j)

vl

( pl
ps

− δ)

(γ − δ)
(5)

Finally, when a master agent of intersection Ai sends a co-
ordination request message to an independent agent of its
adjacent intersection Aj , the offset value, which is assumed
to be Aj , is O(i,j) = −Or (p(i,j)≥p(j,i)) or O(i,j) = Or

(p(i,j) < p(j,i)). As mentioned above, when Aj accepts this
coordination request, its mode changes to fellow.

3.4.3 Direct coordination process
We describe the constructing sequence of green-wave forma-
tion through the coordination of agents.

All independent agents have the possibility of becoming a
master or fellow agent. The condition for an agent Ai to
become a master agent Axc is that Ai is in independent
mode and Pi > α, or Ai is fellow mode and Pi >= Pxc.
Pxc is defined as a master agent Axc’s total traffic flow. The
notation α is a threshold of traffic flow per unit of time to
become master mode.

Step1 If p(ic,j) ≥ β or p(j,ic) ≥ β, master agent Aic starts
direct coordination to control the offset value with its
adjacent agent Aj . Then Aic sends the calculated off-
set value O(ic,j), total traffic flow Pic, start time of
cycle Tic, and distance d(ic,j) between Aic and Aj to
Aj . The notation β is another threshold of traffic flow
per unit of time.



Figure 4: Agent mode
In this simulator, an agent’s mode is denoted with
three colors. Left is a master agent, Middle is a
fellow agent, and Right is an independent agent.
When the clock hand points to the colored area,
the traffic light’s phase is phase1. When the clock
hand points to the white area, the phase is phase2.

Step2 If agent Aj is in independent mode, and if tj ≤ ǫCj

or tj ≥(1− ǫ)Cj , it accepts the request from Aic. The
notation ǫ is a threshold of time path between the start
and the time when Aj will accept the request.

On the other hand, if agent Aj is in the fellow mode
with another master agentAyc, the conditions for agent
Aj to accept the request from Axc are tj ≤ ǫCj , or
tj ≥(1− ǫ)Cj and Pic > Pyc, or Pic = Pyc and l(ic,j) >

l(yc,j).

Moreover, if agent Aj itself is a master Ajc, the con-
dition for Ajc to accept the request from master agent
Aic are Pjc < Pic and tj ≤ ǫCj or tj ≥(1 − ǫ)Cj . If
Aj accepts the request from Aic, Aj becomes a fellow
agent of Aic. Then, Tj is changed to Tic, and Oj is
changed to Oic +O(ic,j).

Step3 Then fellow agent Aj checks the traffic flow p(j,k) and
p(k,j), where k is the intersection adjacent to intersec-
tion j. Then if p(j,k) ≥ β or p(k,j) ≥ β, Aj sends the
coordination request to agent Ak, which is the adja-
cent agent to Aj , similar to a bucket brigade. Agent
Aj sends the calculated offset value O(j,k), total traf-
fic flow Pic, start time of cycle Tk = Tj = Tic, and
distance d(ic,k) = d(ic,j) + d(j,k) to Ak.

Step4 If Ak accepts the request from Aj , the mode of Ak is
changed from independent to fellow.

Step5 When the bucket brigade process terminates, the green-
wave formation consisting of one master agent and sev-
eral follow agents begins coordinated offset control.

4. EXPERIMENTS AND RESULTS
4.1 Traffic Simulator
We verified our traffic light control framework through sim-
ulation to confirm its effectiveness. The movement of cars is
expressed with the Nagel-Schreckenberg (NS) model using
cellular automaton rule 1842 [7]. In the simulator, the unit
of time is called ”step(= 0.3 sec)” and the unit of distance
is ”cell”. Each car flows into the simulator from the cell on
the edge of the simulator according to an inflow probability.
The simulator consisted of roads (edges) and intersections

2Rule 184 can be used as a simple cellular automaton model
for traffic flow in a single lane of a road. In this model,
cars can move in a single direction, stopping and starting
depending on the cars in front of them.

Figure 5: Experiment 3: Road Network
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Figure 6: Experiment 1: Transition of Waiting Cars



Figure 7: Experiment 2: Transition of Waiting Cars
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Figure 8: Experiment 3: Transition of Waiting Cars

(nodes). The road network was a grid-type network. Each
intersection had the coordinate (x, y). We prepared 1 × 20
(20 intersections) and 10× 10 (100 intersections) networks.
The distance between adjacent intersections was 50 cells.
The velocity of cars was 1 cell per step. We set each thresh-
old value, which is the best value, based on pre-exploratory
experiments as follows: α=0.25, β=0.125, γ=1.5, δ=1.1,
ǫ=0.2. The simulation environment was Intel Core 2 Duo
2.40-GHz CPU and 2.00-GB RAM.

4.2 Experiments
Experiment 1
To confirm the effectiveness of green-wave control, we pre-
pared a 1×20 straight road network. Cars enter the network
from cells at both the east and west edges. Both initial in-
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Figure 9: Experiment 4: Transition of Waiting Cars



flow probabilities were 22.5%. We then decreased the inflow
probability from the east edge by 5% after 30000 steps, and
decreased it an additional 5% after 60000 steps. We fixed
the cycle length (400 time steps = 2 min) and split value
(split[0] = split[1] = 0.5). We compared our offset control
model with a non-offset model (all traffic lights control each
phase at the same time).

Experiment 2
We verified the effect of our spring model-based split control
algorithm. We selected two already proposed related split
control models, the Satoh and Oliveira models, for compari-
son. Because our spring model is based on indirect coordina-
tion, each agent does not receive all the information and does
not directly interact with other agents. The Satoh model
is a direct coordination-type model. Each agent also does
not receive all the information but it directly interacts with
other agents. The Oliveira model is a direct coordination-
type model. Each agent interacts with other agents, but it
does not receive all the information.

In addition to these comparative experiments, we also veri-
fied the affinity of these three split control models and our
offset control model. We prepared a 10 × 10 road network.
We also prepared one input cell having 20% inflow probabil-
ity, two input cells having 15% inflow probability, and three
input cells having 10% inflow probability (total six cells).
All other cells had 2.5% inflow probability. For verification
of the real-time adaptability of our framework, we replaced
these six cells and the other six cells having 2.5% inflow
probability after every 10,000 steps. In this experiment, we
used Webster’s cycle length control.

Experiment 3
We compared our traffic light control framework with the
current operating traffic control system model and confirmed
its effectiveness.

We assumed this road network had four residential areas,
one urban area, and one recreational area, as shown figure
5. We prepared the following traffic scenarios:

scenario 1 Traffic flow just before morning rush hour: Car
flow is generally not so heavy, but the flow to the urban
area is little heavier.

scenario 2 Traffic flow during morning rush hour: Many
cars congregate on main roads heading into the urban
area.

scenario 3 Traffic flow after morning rush hour: Car flow
to recreational area becomes high.

scenario 4 Traffic flow during daytime: Car flow is not so
heavy.

scenario 5 Traffic flow during evening rush hour: Many
cars from urban area head to the residential areas.

We changed the traffic flow according to the above sce-
narios after every 10,000 steps. We evaluated a current
operating traffic control system as a comparison. It pre-
pared some traffic light control parameters beforehand and

Figure 10: Experiment 3: Screenshot of Simulator
during Simulation

changed them according to a pre-defined time schedule. To
prepare these traffic light control parameters beforehand, we
conducted the simulation for each scenario with our frame-
work and obtained five parameter sets for each.

Experiment 4
We verified the real-time adaptability of our framework against
sudden changes in traffic flow. We modified scenarios 2 and
4 of experiment 3 as follows:

New scenario 2 The road between intersections (6,5) and
(7,5) was suddenly closed. Therefore, cars had to go
the urban area by bypassing this section.

New scenario 4 The road between intersections (6,5) and
(6,7) was suddenly closed. Therefore, cars had to re-
turn to the residential areas from the recreational area
by bypassing this section. Moreover, we assumed that
the recreational area was crowded more than usual.

We changed the traffic flow according to the above scenario
(scenario 1 -> new 2 -> 3 -> new 4 -> 5) after every 10,000
steps. We compared our traffic light control framework with
a current operating control system, as in experiment 3.

4.3 Results
Figure 6 shows the evaluation results of experiment 1. The
average total waiting queue of cars from simulation start to
end was 382 with the non-offset model, and 318 cars with
our offset control model. This result shows that the green-
wave formation can make traffic flow more smoothly. This
formation is more effective when the difference in both traffic
flows increases.

Figure 7 shows the evaluation results of experiment 2. When
we executed our offset control model, the average total wait-
ing queue of cars from simulation start to end was 419 with
our spring model, 507 with the Satoh model, and 797 with



Figure 11: Screenshot of simulator of experiment 4
(New green-wave formation is constructed according
to change in traffic flow)

the Oliveira model. When we did not use our offset model,
the average total waiting queue of cars was 524 with our
spring model, 590 with the Satoh model, and 786 with the
Oliveira model.

In the Oliveira model, since the split value is fixed and
does not flexibly change, the waiting queue of cars becomes
longer. Moreover, This model could not attain smooth traf-
fic flow, even if it was combined with our offset control
model. On the other hand, with our spring model and the
Satoh model, the waiting queue of cars did not become long.
In addition, the length of the queue decreased when these
models were combined with our offset control model, making
traffic flow more smoothly.

Finally, when our offset control model was combined with
our spring model the total waiting queue of cars decreased
20% compared with only our split control model. On the
other hand, with the Satoh model, the queue length de-
creased by 16%. As mentioned above, our spring model is
an indirect coordination-type model, and the Satoh model
is a direct coordination-type model. Therefore, this result
shows that when the split control model is combined with
the offset control model using direct type coordination as the
upper layer, indirect-type coordination is a more desirable
approach for the split control model as the lower layer.

Figure 8 shows the evaluation results of experiment 3. The
total average waiting queue of cars from simulation start to
end was 228 with our control framework and 231 with the
current operating control system. Figure 10 shows a screen-
shot of the simulator during the simulation of experiment
3. The green, aqua and orange sectors describe an agent’s
mode (see Figure 4). Agents coordinated with others and
formed a subarea and a green-wave formation suitable for
traffic flow: many cars congregated on main roads heading
to the urban area.

Figure 9 shows the results of experiment 4. The total av-

erage waiting queue of cars from simulation start to end
was 236 with our control framework and 244 cars with the
current operating control system. Figure 11 shows a screen-
shot of the simulator during the simulation of experiment 4.
Agents coordinated with others and formed a subarea and
a green-wave formation for changed traffic flow. We could
observe that agents on bypasses threw in the coordination,
and several agents that had coordinated dissolved the co-
ordination. From 10,000 to 20,000 steps, the queue length
was 246 cars with our control framework and 276 cars with
the current operating control system, and from 30,000 to
40,000 steps, the queue length was 263 cars with our control
framework and 285 cars with the current operating control
system.

When traffic flow was normal (situation in experiment 3),
there was not much difference between our control frame-
work and the current operating control system having sev-
eral parameter sets beforehand because there was no unex-
pected event in this experiment. However, when an unex-
pected event occurs, such as a traffic accident, the difference
in the waiting queue of cars between both our framework
and the current system becomes quite large, as observed in
new scenarios 2 and 4 in experiment 4. This is because in
our framework, green-wave formation can be organized any-
where. This result shows that our control framework can
deal with sudden change in traffic flow in contrast to the
current operating control system.

With this simulation, we believe that we could show the fun-
damental effectiveness of our traffic control framework based
on a multi-agent paradigm. Several parameters used in the
simulation were optimized to the simulation environment.
Therefore, to apply our framework to a real traffic system, a
pre-experiment to find the appropriate parameter values is
necessary. For example, in the current operating control sys-
tem, MODERATO, many parameters are also necessary and
they are set empirically and corrected through actual field
observation. Therefore, we believe that a similar approach
can also be applied to our framework.

5. CONCLUSIONS
We proposed a multi-agent-based traffic light control frame-
work. To construct dynamic complex distributed systems,
top down control and bottom up control are both necessary.
In the proposed framework, we combined direct coordination
as top-down control, and indirect coordination as bottom-up
control. The important point is affinity of both coordination
types. By comparative evaluation through simulation, we
could verify the basic effectiveness of our framework. In our
framework, direct coordination can be seen as interfering
with indirect coordination. Mitigating this interference was
our strategy. However, another strategy for making both
coordination methodologies interact efficiently may be pos-
sible. Therefore, we will consider this in the future. Finally,
the current simulated road network is a simple lattice struc-
ture, so we will perform more evaluations with large-scale
and various road networks in the future.
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