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ABSTRACT
The problem of modeling and predicting spatiotemporal traf-
fic phenomena over an urban road network is important to
many traffic applications such as detecting and forecasting
congestion hotspots. This paper presents a decentralized
data fusion and active sensing (D2FAS) algorithm for mobile
sensors to actively explore the road network to gather and
assimilate the most informative data for predicting the traf-
fic phenomenon. We analyze the time and communication
complexity of D2FAS and demonstrate that it can scale well
with increasing number of observations when the number of
sensors is large. We provide a theoretical guarantee on its
predictive performance to be equivalent to a sophisticated
centralized approximate Gaussian process prediction model.
This result implies that the computational load of the cen-
tralized model can be distributed among the mobile sensors,
thereby achieving efficient and scalable prediction. Empir-
ical evaluation on a real-world traffic phenomenon dataset
over an urban road network shows that our D2FAS algo-
rithm is significantly more time-efficient and scalable (i.e.,
in the number of observations and sensors) than existing
state-of-the-art algorithms while achieving comparable pre-
dictive performance.

1. INTRODUCTION
Knowing and understanding the traffic conditions and phe-
nomena over road networks has become increasingly impor-
tant to the goal of achieving smooth-flowing, congestion-free
traffic, especially in densely-populated urban cities. Accord-
ing to a 2011 urban mobility report [28], the traffic conges-
tions in the USA have caused 1.9 billion gallons of extra fuel,
4.8 billion hours of travel delay, and $101 billion of delay and
fuel cost. Such huge resource wastage can be potentially
mitigated if the spatiotemporally varying traffic phenomena
(e.g., speeds and travel times along road segments) are pre-

dicted accurately enough in real time to detect and forecast
the congestion hotspots; network-level (e.g., ramp metering,
road pricing) and user-level (e.g., route replanning) mea-
sures can then be taken to relieve these congestions, so as
to improve the overall efficiency of road networks.

In practice, it is non-trivial to achieve real-time, accurate
prediction of a spatiotemporally varying traffic phenomenon
because the quantity of sensors that can be deployed to ob-
serve an entire road network is cost-constrained. Tradition-
ally, static sensors such as loop detectors [9, 34] are placed
at designated locations in a road network to collect data for
predicting the traffic phenomenon. However, they provide
sparse coverage (i.e., many road segments are not observed,
thus leading to data sparsity), incur high installation and
maintenance costs, and cannot reposition by themselves in
response to changes in the traffic phenomenon. Low-cost
GPS technology allows the collection of traffic data using
passive mobile probes [35] (e.g., taxis/cabs). Unlike static
sensors, they can directly measure the travel times along
road segments. But, they provide fairly sparse coverage
due to low GPS sampling frequency (i.e., often imposed by
taxi/cab companies) and no control over their routes, in-
cur high initial implementation cost, pose privacy issues,
and produce highly-varying speeds and travel times while
traversing the same road segment due to inconsistent driv-
ing behaviors. A critical mass of probes is needed on each
road segment to ease the severity of the last drawback [30]
but is often hard to achieve on non-highway segments due
to sparse coverage. In contrast, we propose the use of active
mobile probes [33] to overcome the limitations of static and
passive mobile probes. In particular, they can be directed to
explore any segments of a road network to gather traffic data
at a desired GPS sampling rate while enforcing consistent
driving behavior.

How then do the mobile probes/sensors actively explore a
road network to gather and assimilate the most informative
observations for predicting the traffic phenomenon? There
are three key issues surrounding this problem, which will be
discussed together with the related works:

Models for predicting spatiotemporal traffic phenom-
ena. The spatiotemporal correlation structure of a traffic
phenomenon can be exploited to predict the traffic condi-



tions of any unobserved road segment at any time using
the observations taken along the mobile sensors’ paths. To
achieve this, existing Bayesian filtering frameworks [2, 34,
35] utilize various handcrafted parametric models predict-
ing traffic flow along a highway stretch that only correlate
adjacent segments of the highway. Hence, their predictive
performance will be compromised when the current observa-
tions are sparse and/or the actual spatial correlation spans
multiple segments. Their strong Markov assumption further
exacerbates this problem. It is also not demonstrated how
these models can be generalized to work for arbitrary road
network topologies and more complex correlation structure.
Existing multivariate parametric traffic prediction models
[8, 18] do not quantify uncertainty estimates of the predic-
tions and impose rigid spatial locality assumptions that do
not adapt to the true underlying correlation structure.

In contrast, we assume the traffic phenomenon over an ur-
ban road network (i.e., comprising full range of road types
like highways, arterials, slip roads, etc.) to be realized from
a rich class of Bayesian non-parametric models called the
Gaussian process (GP) (Section 2) that can formally char-
acterize its spatiotemporal correlation structure and refine
it with growing number of observations [21]. More impor-
tantly, GP can provide formal measures of predictive un-
certainty (e.g., based on variance or entropy criterion) for
directing the mobile sensors to explore highly uncertain ar-
eas of the road network. The work of [9] used GP to repre-
sent the traffic phenomenon over a network of only highways
and defined the correlation of speeds between highway seg-
ments to depend only on the geodesic (i.e., shortest path)
distance of these segments with respect to the network topol-
ogy. Different from the work of [9], we further improve the
correlation structure of GP by enabling it to exploit road
segment features (e.g., length, number of lanes, direction,
speed limit) for differentiating road types, which is not found
in the works described above.

Data fusion. The observations are gathered distributedly
by each mobile sensor along its path in the road network
and have to be assimilated in order to predict the traffic
phenomenon. Since a large number of observations are ex-
pected to be collected, a centralized approach to GP predic-
tion cannot be performed in real time due to its cubic time
complexity.

To resolve this, we propose a decentralized data fusion ap-
proach to efficient and scalable approximate GP prediction
(Section 3). Existing decentralized and distributed Bayesian
filtering frameworks for addressing non-traffic related prob-
lems [3, 4, 20, 26, 32] will face the same difficulties as their
centralized counterparts described above if applied to pre-
dicting traffic phenomena, thus resulting in loss of predictive
performance. Distributed regression algorithms [7, 22] for
static sensor networks gain efficiency from spatial locality
assumptions, which cannot be exploited by mobile sensors
whose paths are not constrained by locality. The work of
[5] proposed a distributed data fusion approach to approxi-
mate GP prediction based on an iterative Jacobi overrelax-
ation algorithm, which incurs some critical limitations: (a)
the past observations taken along the mobile sensors’ paths
are assumed to be uncorrelated, which greatly undermines
its predictive performance when they are in fact correlated

and/or the current observations are sparse; (b) when the
number of robots grows large, it converges very slowly; (c)
it assumes that the range of positive correlation has to be
bounded by some factor of the communication range. Our
proposed decentralized algorithm does not suffer from these
limitations and can be computed exactly with efficient time
bounds.

Active sensing. The mobile sensors have to actively gather
the most informative observations for minimizing the uncer-
tainty of modeling and predicting the traffic phenomenon.
Existing centralized [13, 14, 15] and decentralized [12, 31]
active sensing algorithms scale poorly with increasing num-
ber of observations and/or mobile sensors. We propose a
decentralized active sensing algorithm that overcomes these
issues of scalability (Section 4).

This paper presents a novel Decentralized Data Fusion and
Active Sensing (D2FAS) algorithm (Sections 3 and 4) for
sampling spatiotemporally varying environmental phenom-
ena with mobile sensors. Note that the decentralized data
fusion component of D2FAS can also be used for static and
passive mobile sensors. The practical applicability of D2FAS
is not restricted to traffic monitoring; it can be used in
other environmental sensing applications such as precision
agriculture, mineral prospecting [16], monitoring of ocean
and freshwater phenomena [6, 23, 17] (e.g., plankton bloom,
anoxic zones), forest ecosystems, pollution (e.g., oil spill), or
contamination (e.g., radiation leak). The specific contribu-
tions of this paper include:

• Analyzing the time and communication overheads of D2FAS
(Section 5): we prove that D2FAS can scale better than
existing state-of-the-art algorithms with increasing num-
ber of observations when the number of sensors is large;
• Theoretically guaranteeing the predictive performance of

the decentralized data fusion component of D2FAS to be
equivalent to that of a sophisticated centralized approxi-
mate GP prediction model (Section 3). This result implies
that the computational load of the centralized model can
be distributed among the mobile sensors, thereby achiev-
ing efficient and scalable prediction;
• Improving the correlation structure of GP model by en-

abling it to exploit road segment features (e.g., length,
number of lanes, direction, and speed limit) and the road
network topology (Section 2.1);
• Empirically evaluating the predictive performance, time

efficiency, and scalability of D2FAS algorithm on a real-
world traffic phenomenon (i.e., speeds of road segments)
dataset over an urban road network (Section 6): D2FAS is
more time-efficient and scales significantly better with in-
creasing number of observations and sensors while achiev-
ing predictive performance close to that of existing state-
of-the-art algorithms.

2. GAUSSIAN PROCESS REGRESSION OVER
GRAPH

The Gaussian process (GP) can be used to model a spa-
tiotemporal traffic phenomenon over a road network as fol-
lows: The traffic phenomenon is defined to vary as a realiza-
tion of a GP. Let V be a set of road segments representing
the domain of the road network such that each road segment
s ∈ V is specified by a p-dimensional vector of features and



is associated with a realized (random) measurement zs (Zs)
of the traffic condition such as speed if s is observed (un-
observed). Let {Zs}s∈V denote a GP, that is, every finite
subset of {Zs}s∈V follows a multivariate Gaussian distri-
bution [25]. Then, the GP is fully specified by its prior

mean µs , E[Zs] and covariance σss′ , cov[Zs, Zs′ ] for all
s, s′ ∈ V . In particular, we will describe in Section 2.1
how the covariance σss′ for modeling the correlation of mea-
surements between all pairs of segments s, s′ ∈ V can be
designed to exploit the road segment features and the road
network topology.

A chief capability of the GP model is that of performing
probabilistic regression: Given a set D ⊂ V of observed road
segments and a column vector zD of corresponding measure-
ments, the joint distribution of the measurements at any set
Y ⊆ V \D of unobserved road segments remains Gaussian
with the following posterior mean vector and covariance ma-
trix

µY |D , µY + ΣY DΣ−1
DD(zD − µD) (1)

ΣY Y |D , ΣY Y − ΣY DΣ−1
DDΣDY (2)

where µY (µD) is a column vector with mean components
µs for all s ∈ Y (s ∈ D), ΣY D (ΣDD) is a covariance ma-
trix with covariance components σss′ for all s ∈ Y, s′ ∈ D
(s, s′ ∈ D), and ΣDY is the transpose of ΣY D. The posterior
mean vector µY |D (1) is used to predict the measurements
at any set Y of unobserved road segments. The posterior
covariance matrix ΣY Y |D (2), which is independent of the
measurements zD, can be processed in two ways to quan-
tify the uncertainty of these predictions: (a) the trace of
ΣY Y |D yields the sum of posterior variances Σss|D over all
s ∈ Y ; (b) the determinant of ΣY Y |D is used in calculating
the Gaussian posterior joint entropy

H[ZY |ZD] ,
1

2
log(2πe)|Y ||ΣY Y |D| . (3)

In contrast to the first measure of uncertainty that assumes
conditional independence between measurements in the set
Y of unobserved road segments, the entropy-based measure
(3) accounts for their correlation, thereby not overestimating
their uncertainty. Hence, we will focus on using the entropy-
based measure of uncertainty in this paper.

2.1 Graph-Based Kernel
If the observations are noisy (i.e., by assuming additive inde-
pendent identically distributed Gaussian noise with variance
σ2
n), then their prior covariance σss′ can be expressed as

σss′ = k(s, s′) + σ2
nδss′

where δss′ is a Kronecker delta that is 1 if s = s′ and 0
otherwise, and k is a kernel function measuring the pair-
wise “similarity” of road segments. For a traffic phenomenon
(e.g., road speeds), the correlation of measurements between
pairs of road segments depends not only on their features
(e.g., length, number of lanes, speed limit, direction) but also
the road network topology. Therefore, the kernel function
should be defined to exploit both the features and topology
information, which will be described next.

Let the road network be represented by a weighted directed
graph G , (V,E,w) comprising a set V of vertices that

denotes the domain of all possible road segments, a set
E ⊆ V × V of directed edges such that there is a directed
edge (s, s′) from s ∈ V to s′ ∈ V iff the end of segment s
connects to the start of segment s′ in the road network, and
a weight function w : E → R+ measuring the standardized
Manhattan distance [1] of each directed edge:

w((s, s′)) ,
p∑

i=1

|[s]i − [s′]i|
ri

where [s]i ([s′]i) is the i-th component of the feature vector
specifying road segment s (s′), and ri is the range of the
i-th feature. The weight function w serves as a dissimilarity
measure between adjacent road segments.

The next step is to compute the shortest path distance
d(s, s′) between all pairs of road segments s, s′ ∈ V (i.e.,
using Floyd-Warshall or Johnson’s algorithm) with respect
to the topology of the weighted directed graph G. Such a
distance function is again a measure of dissimilarity, rather
than one of similarity, as required by a kernel function. Fur-
thermore, a valid GP kernel needs to be positive semidefinite
and symmetric [27], which are clearly violated by d.

To construct a valid GP kernel from d, multi-dimensional
scaling [1] is applied to embed the domain of road segments

into the p′-dimensional Euclidean space Rp′ . Specifically,

a mapping g : V → Rp′ is determined by minimizing the
squared loss

g∗ = arg min
g

∑
s,s′∈V

(d(s, s′)− ‖g(s)− g(s′)‖)2 .

With a small squared loss, the Euclidean distance ‖g∗(s)−
g∗(s′)‖ between g∗(s) and g∗(s′) is expected to closely ap-
proximate the shortest path distance d(s, s′) between any
pair of road segments s and s′. After embedding into the
Euclidean space, a conventional kernel function such as the
squared exponential one [25] can then be used:

k(s, s′) = σ2
s exp

−1

2

p′∑
i=1

(
[g∗(s)]i − [g∗(s′)]i

`i

)2


where [g∗(s)]i ([g∗(s′)]i) is the i-th component of the p′-
dimensional vector g∗(s) (g∗(s′)), and the hyperparameters
σs, `1, . . . , `p′ are, respectively, signal variance and length-
scales that can be learned using maximum likelihood esti-
mation [25]. The resulting kernel function k1 is guaranteed
to be valid.

2.2 Sparse Approximation
Although the GP is an effective predictive model, it faces a
practical limitation of cubic time complexity in the number
|D| of observations; this can be observed from computing
the posterior distribution (i.e., (1) and (2)), which requires
inverting the covariance matrix ΣDD that incurs O(|D|3)
time. If |D| is expected to be large, then GP prediction
cannot be performed in real time. For practical usage, we
have to resort to computationally cheaper approximate GP
prediction.

1For spatiotemporal traffic modeling, the kernel function k
can be extended to account for the temporal dimension.



A simple method of approximation is to select only a subset
U of the entire set D of observed road segments (i.e., U ⊂ D)
to compute the posterior distribution of the measurements
at any set Y ⊆ V \D of unobserved road segments. Such a
sparse subset of data (SoD) approximation method produces
the following predictive Gaussian distribution, which closely
resembles that of the full GP model (i.e., by simply replacing
D in (1) and (2) with U):

µY |U = µY + ΣY UΣ−1
UU (zU − µU ) (4)

ΣY Y |U = ΣY Y − ΣY UΣ−1
UUΣUY . (5)

Notice that the covariance matrix ΣUU to be inverted only
incurs O(|U |3) time, which is independent of |D|.

The predictive performance of SoD approximation is sensi-
tive to the selection of subset U . In practice, random subset
selection often yields poor performance. This issue can be
resolved by actively selecting an informative subset U in an
iterative greedy manner: Firstly, U is initialized to be an
empty set. Then, all road segments in D \ U are scored
based on a criterion that can be chosen from, for example,
the works of [10, 11, 29]. The highest-scored segment is se-
lected for inclusion into U and removed from D. This greedy
selection procedure is iterated until U reaches a pre-defined
size. Among the various criteria introduced earlier, the dif-
ferential entropy score [11] is reported to perform well [19]; it
is a monotonic function of the posterior variance Σss|U (5),
thus resulting in the greedy selection of a segment s ∈ D \U
with the largest variance in each iteration.

3. DECENTRALIZED DATA FUSION
In the previous section, two centralized data fusion approaches
to exact (i.e., (1) and (2)) and approximate (i.e., (4) and (5))
GP prediction are introduced. In this section, we will discuss
the decentralized data fusion component of our D2FAS algo-
rithm, which distributes the computational load among the
mobile sensors to achieve efficient and scalable approximate
GP prediction.

The intuition to our decentralized data fusion algorithm is
as follows: each of the K mobile sensors constructs a local
summary of the observations taken along its own path in
the road network and communicates its local summary to
every other sensor. Then, it assimilates the local summaries
received from the other sensors into a globally consistent
summary, which is exploited for predicting the traffic phe-
nomenon as well as active sensing. This intuition will be
formally realized and described in the paragraphs below.

While exploring the road network, each mobile sensor sum-
marizes its local observations taken along its path based on
a common support set U ⊂ V known to all the other sensors.
Its local summary is defined as follows:

Definition 1 (Local Summary). Given a common sup-
port set U ⊂ V known to all K mobile sensors, a set Dk ⊂ V
of observed road segments and a column vector zDk of cor-
responding measurements local to mobile sensor k, its local
summary is defined as a tuple (żkU , Σ̇

k
UU ) where

żkU , ΣUDkΣ−1
DkDk|U (zDk − µDk ) (6)

Σ̇k
UU , ΣUDkΣ−1

DkDk|UΣDkU (7)

such that ΣDkDk|U is defined in a similar manner to (5).

Remark. Unlike SoD (Section 2.2), the support set U of
road segments does not have to be observed since the local
summary (i.e., (6) and (7)) is independent of the correspond-
ing measurements zU . So, U does not need to be a subset of
D =

⋃K
k=1Dk. To select an informative support set U from

the set V of all possible segments in the road network, an
offline active selection procedure similar to that in the last
paragraph of Section 2.2 can be performed just once prior to
observing data to determine U . In contrast, SoD has to per-
form online active selection every time new road segments
are being observed.

By communicating its local summary to every other sensor,
each mobile sensor can then construct a globally consistent
summary from the received local summaries:

Definition 2 (Global Summary). Given a common
support set U ⊂ V known to all K mobile sensors and the lo-
cal summary (żkU , Σ̇

k
UU ) of every mobile sensor k = 1, . . . ,K,

the global summary is defined as a tuple (zU ,ΣUU ) where

zU ,
K∑

k=1

żkU (8)

ΣUU , ΣUU +

K∑
k=1

Σ̇k
UU . (9)

Remark. In this paper, we assume all-to-all communica-
tion between the K mobile sensors. Supposing this is not
possible and each sensor can only communicate locally with
its neighbors, the summation structure of the global sum-
mary (specifically, (8) and (9)) makes it amenable to be
constructed using distributed consensus filters [20]. We omit
these details since they are beyond the scope of this paper.

Finally, the global summary is exploited by each mobile sen-
sor to compute a globally consistent predictive Gaussian dis-
tribution, as detailed in Theorem 1A below, as well as to
perform decentralized active sensing (Section 4):

Theorem 1. Let a common support set U ⊂ V be known
to all K mobile sensors.

A. Given the global summary (zU ,ΣUU ), each mobile sen-
sor computes a globally consistent predictive Gaussian

distribution N (µD2FAS
Y ,ΣD2FAS

Y Y ) of the measurements at
any set Y of unobserved road segments where

µD2FAS
Y , µY + ΣY UΣ

−1
UUzU (10)

ΣD2FAS
Y Y , ΣY Y − ΣY U (Σ−1

UU − Σ
−1
UU )ΣUY . (11)

B. Let N (µPITC
Y |D ,ΣPITC

Y Y |D) be the predictive Gaussian dis-
tribution computed by the centralized partially indepen-
dent training conditional (PITC) approximation of GP



model [24] where

µPITC
Y |D , µY + ΓY D (ΓDD + Λ)−1 (zD − µD) (12)

ΣPITC
Y Y |D , ΣY Y − ΓY D (ΓDD + Λ)−1 ΓDY (13)

such that

ΓAB , ΣAUΣ−1
UUΣUB (14)

and Λ is a block-diagonal matrix constructed from the
K diagonal blocks of ΣDD|U , each of which is a matrix

ΣDkDk|U for k = 1, . . . ,K where D =
⋃K

k=1Dk. Then,

µD2FAS
Y = µPITC

Y |D and ΣD2FAS
Y Y = ΣPITC

Y Y |D.

The proof of Theorem 1B is given in Appendix A. The
equivalence result of Theorem 1B bears two implications:

Remark 1. The computational load of the centralized PITC
approximation of GP model can be distributed among K
mobile sensors, thereby improving the time efficiency of pre-
diction. Specifically, supposing |Y | ≤ |U | for simplicity, the
O
(
|D|((|D|/K)2 + |U |2)

)
time incurred by PITC can be re-

duced to O
(
(|D|/K)3 + |U |3 + |U |2K

)
time of running our

decentralized algorithm on each of the K sensors, the latter
of which scales better with increasing number |D| of obser-
vations.

Remark 2. We can draw insights from PITC to elucidate
an underlying property of our decentralized algorithm: It is
assumed that ZD1 , . . . , ZDK , ZY are conditionally indepen-
dent given the measurements at the support set U of road
segments. To potentially reduce the degree of violation of
this assumption, an informative support set U is actively
selected, as described earlier in this section. Furthermore,
the experimental results on a real-world traffic phenomenon
dataset2 over an urban road network (Section 6) show that
D2FAS can achieve predictive performance comparable to
that of the full GP model while enjoying computational gain
over it, thus demonstrating the practicality of such an as-
sumption for predicting traffic phenomena. The predictive
performance of D2FAS can be improved by increasing the
size of U at the expense of greater time and communication
overhead.

4. DECENTRALIZED ACTIVE SENSING
The problem of active sensing with K mobile sensors is for-
mulated as follows: Given the set Dk ⊂ V of observed road
segments and the currently traversed road segment sk ∈ V
of every mobile sensor k = 1, . . . ,K, the mobile sensors have
to select the most informative walks w∗1 , . . . , w

∗
K of length L

each and with respective origins s1, . . . , sK in the road net-
work G:

(w∗1 , . . . , w
∗
K) = arg max

(w1,...,wK)

H
[
Z⋃K

k=1
Ywk

∣∣∣Z⋃K
k=1

Dk

]
(15)

where Ywk denotes the set of unobserved road segments in-
duced by the walk wk. Interestingly, it can be shown us-
ing the chain rule for entropy that these maximum-entropy
walks w∗1 , . . . , w

∗
K minimize the posterior joint entropy (i.e.,

2The work of [24] only illustrated the predictive performance
of PITC on a simulated toy example.

H[ZV \
⋃K

k=1
(Dk

⋃
Yw∗

k
)|Z⋃K

k=1
(Dk

⋃
Yw∗

k
)]) of the measurements

at the remaining unobserved segments (i.e., V \
⋃K

k=1(Dk

⋃
Yw∗

k
))

in the road network. After executing the walk w∗k, each mo-
bile sensor k observes the set Yw∗

k
of road segments and

updates its local information:

Dk ← Dk

⋃
Yw∗

k
, zDk ← zDk

⋃
Yw∗

k
, sk ← terminus of w∗k .

(16)

Without imposing any structural assumption, solving the
active sensing problem (15) will be prohibitively expensive
due to the space of possible joint walks (w1, . . . , wK) that
grows exponentially in the number K of mobile sensors. To
overcome this scalability issue, ZYw1

, . . . , ZYwK
are assumed

to be conditionally independent given the measurements at
the set D =

⋃K
k=1Dk of observed road segments. Such an

assumption is not uncommon: it is often made in order to
calculate the widely-used sum of posterior variances (i.e.,
mean-squared error) criterion (Section 2). In practice, this
assumption usually becomes less restrictive when the num-
ber |D| of observed road segments increases to potentially
reduce the degree of violation of conditional independence,
the correlation of measurements between road segments de-
creases, and/or the mobile sensors are sufficiently far apart.
Using the chain rule for entropy and subsequently the condi-
tional independence assumption, the active sensing problem
(15) reduces to

max
(w1,...,wK)

H
[
Z⋃K

k=1
Ywk

∣∣∣ZD

]
= max

(w1,...,wK)

K∑
k=1

H
[
ZYwk

∣∣∣Z⋃k−1
i=1 Ywi

⋃
D

]
= max

(w1,...,wK)

K∑
k=1

H
[
ZYwk

∣∣∣ZD

]
=

K∑
k=1

max
wk

H
[
ZYwk

∣∣∣ZD

]
,

which can be solved in a decentralized manner by each mo-
bile sensor k:

w∗k = arg max
wk

H
[
ZYwk

∣∣∣ZD

]
= arg max

wk

∣∣∣ΣYwk
Ywk
|D

∣∣∣ (17)

such that the second equality follows from (3) and the poste-
rior covariance matrix ΣYwk

Ywk
|D can be obtained using one

of the data fusion methods described earlier, specifically, us-
ing (2) of full GP model (Section 2), (5) of SoD (Section 2.2),
or (11) of D2FAS (Section 3). If full GP or SoD is to be per-
formed separately on each of the K mobile sensors rather
than centrally, then the observations that are gathered dis-
tributedly by the sensors have to be fully communicated to
every sensor. In contrast, D2FAS only requires exchanging
local summaries (Definition 1) between sensors.

Algorithm 1 below outlines the key operations of our D2FAS
algorithm to be run on each mobile sensor k, as detailed
previously in Sections 3 and 4.

5. TIME AND COMMUNICATION OVER-
HEADS

In this section, the time and communication overheads of
our D2FAS algorithm are analyzed and compared to that of
decentralized active sensing coupled with full GP (FGP) or
SoD data fusion method to be run on each of the K sensors.



Algorithm 1: D2FAS(U,K,L, k,Dk, zDk , sk)

while true do
/* Data fusion (Section 3) */

Construct local summary by (6) and (7)
Exchange local summary with every sensor i 6= k
Construct global summary by (8) and (9)
Predict measurements at unobserved road segments by
(10) and (11)
/* Active Sensing (Section 4) */

Compute maximum-entropy walk w∗k by (11) and (17)
Execute walk w∗k and observe its road segments Yw∗

k

Update local information Dk, zDk , and sk by (16)

5.1 Time Complexity
Our D2FAS algorithm comprises the data fusion and active
sensing components. The data fusion component involves
computing the local and global summaries and the predic-
tive Gaussian distribution, as shown in Algorithm 1. To
construct the local summary using (6) and (7), each sen-
sor has to evaluate ΣDkDk|U in O

(
|U |3 + |U |(|D|/K)2

)
time

and invert it in O
(
(|D|/K)3

)
time, after which the local

summary is obtained in O
(
|U |2|D|/K + |U |(|D|/K)2

)
time.

The global summary is computed in O
(
|U |2K

)
by (8) and

(9). Finally, the predictive Gaussian distribution is derived
in O

(
|U |3 + |U ||Y |2

)
time using (10) and (11). Supposing

|Y | ≤ |U | for simplicity, the time complexity of data fusion
is then O

(
(|D|/K)3 + |U |3 + |U |2K

)
.

The active sensing component involves computing the ma-
ximum-entropy walk by (11) and (17). Let the maximum
outdegree of G be denoted by ∆. Then, each mobile sensor
k has to consider ∆L possible walks. For each walk wk, eval-

uating the determinant of ΣD2FAS
Ywk

Ywk
incurs O

(
L|U |2 + L3

)
time. The time complexity of active sensing is therefore
O
(
∆LL(|U |2 + L2)

)
.

Hence, the time complexity of D2FAS is O((|D|/K)3+|U |3+
|U |2K+ ∆LL(|U |2 +L2)). In contrast, the time incurred by
decentralized active sensing coupled with FGP and SoD are,
respectively, O

(
|D|3 + ∆LL(|D|2 + L2)

)
andO(|U |3|D|+∆L

L(|U |2 + L2)). It can be observed that D2FAS can poten-
tially scale better with increasing number |D| of observations
when the number K of sensors is large. The scalability of
D2FAS vs. FGP and SoD will be further evaluated empiri-
cally in Section 6.

5.2 Communication Complexity
Let the communication overhead be defined as the size of
each broadcast message. Recall from Algorithm 1 (i.e., D2FAS)
that, in each iteration, each sensor broadcasts a O

(
|U |2

)
-

sized summary encapsulating its local observations, which
is robust against communication failure. In contrast, FGP
and SoD require each sensor to broadcast, in each iteration,
a O(|D|/K)-sized message comprising exactly its local ob-
servations to handle communication failure. If the number
of local observations grows to be larger in size than a local
summary of predefined size, then our D2FAS algorithm is
more scalable than FGP and SoD in terms of communica-
tion overhead.
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Figure 1: Traffic phenomenon (i.e., speeds (km/h)
of road segments) over an urban road network
in Tampines area, Singapore during evening peak
hours on April 20, 2011. It comprises 775 road seg-
ments including highways, arterials, slip roads, etc.
The mean speed is 48.8 km/h and the population
standard deviation is 20.5 km/h.

6. EXPERIMENTS AND DISCUSSION
This section evaluates the predictive performance, time effi-
ciency, and scalability of our D2FAS algorithm on a real-
world traffic phenomenon (i.e., speeds of road segments)
dataset over an urban road network, as shown and detailed
in Fig. 1. The performance of D2FAS is compared to that
of decentralized active sensing coupled with two state-of-art
data fusion methods: full GP (FGP) and SoD (Section 2).
A network of K mobile sensors is tasked to explore the
road network to gather a total of up to 960 observations.
To reduce computational time, each sensor repeatedly com-
putes and executes maximum-entropy walks of length L = 2
(instead of computing a very long walk), unless otherwise
stated. The size of the support set U is set to be 64. The
experiments are run on a Linux PC platform with Intel R©
CoreTM2 Quad CPU Q9550 at 2.83 GHz.

6.1 Performance Metrics
The first metric evaluates the predictive performance of a
tested algorithm: it measures the root mean squared error
(RMSE) √

1

|V |
∑
s∈V

(zs − µ̂s)2

over the entire domain V of the road network that is in-
curred by the predictive mean µ̂s of the tested algorithm,
specifically, using (1) of FGP, (4) of SoD, or (10) of D2FAS.

The second performance metric evaluates the time efficiency
and scalability of a tested algorithm by measuring its in-
curred time.

6.2 Results and Analysis
Fig. 2 shows the results of the performance of the tested algo-
rithms averaged over 40 randomly generated starting sensor
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Figure 2: Graphs of (a-f) predictive performance and (g-l) time efficiency vs. total no. |D| of observations
gathered by varying number K of mobile sensors.

locations with varying number K = 4, 6, 8, 10, 20, 30 of sen-
sors. It can be observed that D2FAS is more time-efficient
and scales significantly better with increasing number |D|
of observations (Figs. 2g to 2l) while achieving predictive
performance close to that of FGP and SoD (Figs. 2a to 2f).
Hence, the real-time performance and scalability (i.e., in the
number of observations) of our D2FAS algorithm enable it
to be used for persistent large-scale traffic modeling and pre-
diction where a large number of observations are expected to
be available. The slightly better predictive performance of
FGP and SoD are expected since they are able to exploit all
collected observations for data fusion. In contrast, D2FAS
can only exploit local summaries over the small support set
U . As mentioned earlier in Section 3, the predictive perfor-
mance of D2FAS can be improved by increasing the size of U
at the expense of greater time and communication overhead.

Using the same results as that in Fig. 2, Fig. 3 plots them
differently to reveal the scalability of the tested algorithms
with increasing number K of mobile sensors. It can be ob-
served from Figs. 3a to 3c that the predictive performance of
all tested algorithms improve with a larger number of sensors
because each sensor needs to execute fewer number of walks
and its performance is therefore less adversely affected by its
myopic selection (i.e., L = 2) of maximum-entropy walks.
As a result, more informative unobserved road segments are
explored. As shown in Fig. 3d, the time incurred by D2FAS
decreases due to its decentralized data fusion component
that can distribute the computational load among a greater
number of sensors. In contrast, it can be seen from Figs. 3e
and 3f that the time incurred by FGP and SoD increase:
as discussed above, a larger number of sensors result in a
greater quantity of more informative unique observations to
be gathered (i.e., fewer repeated observations), which in-
crease the time needed for data fusion. When K ≥ 10,
D2FAS is at least 1 order of magnitude faster than FGP
and SoD. Hence, the scalability (i.e., in the number of sen-
sors) of our D2FAS algorithm allows the deployment of a
large-scale mobile sensor network to achieve more accurate
traffic modeling and prediction.

Fig. 4 shows the results of the performance of our D2FAS
algorithm with varying length L = 2, 4, 6, 8, 10 of maximum-
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Figure 3: Graphs of (a-c) predictive performance
and (d-f) time efficiency vs. total no. |D| of obser-
vations gathered by varying number K of sensors.
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Figure 4: Graphs of (a) predictive performance and
(b) time efficiency vs. total no. |D| of observations
gathered by 2 mobile sensors running D2FAS with
varying length L of maximum-entropy walks.

entropy walks; we choose to experiment with just 2 sen-
sors since Fig. 3d reveals that a smaller number of sensors
produce poorer predictive performance and higher incurred
time. It can be observed that the predictive performance
improves with increasing walk length L because the selec-
tion of maximum-entropy walks is less myopic. When L
increases to 10, the incurred time increases to about 10 sec-
onds, which is reasonable in practice. By deploying a larger
number of sensors, the incurred time is expected to decrease
while improving the predictive performance.

7. CONCLUSION
This paper describes a decentralized data fusion and active
sensing algorithm for modeling and predicting spatiotempo-
ral traffic phenomena with mobile sensors. Analytical and
empirical results have shown that our D2FAS algorithm is
extremely time-efficient and scales significantly better with
increasing number of observations and sensors while achiev-
ing predictive performance close to that of state-of-the-art
FGP and SoD. Hence, D2FAS is practical for deployment
in a large-scale mobile sensor network to achieve persistent
and accurate traffic modeling and prediction. For our future
work, we will assume that each sensor can only communi-
cate locally with its neighbors (instead of assuming all-to-all
communication between sensors) and develop a distributed
data fusion approach to efficient and scalable approximate
GP prediction based on our D2FAS algorithm and consensus
filters [20].
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APPENDIX
A. PROOF OF THEOREM 1B
We need to first simplify the ΓY D (ΓDD + Λ)−1 term in the
expressions of µPITC

Y |D (12) and ΣPITC
Y Y |D (13).

(ΓDD + Λ)−1

=
(
ΣDUΣ−1

UUΣUD + Λ
)−1

= Λ−1 − Λ−1ΣDU

(
ΣUU + ΣUDΛ−1ΣDU

)−1
ΣUDΛ−1

= Λ−1 − Λ−1ΣDUΣ
−1
UUΣUDΛ−1 .

(18)
The second equality follows from matrix inversion lemma.
The last equality is due to

ΣUU + ΣUDΛ−1ΣDU

= ΣUU +

K∑
k=1

ΣUDkΣ−1
DkDk|UΣDkU

= ΣUU +

K∑
k=1

Σ̇k
UU = ΣUU .

(19)

Using (14) and (18),

ΓY D (ΓDD + Λ)−1

= ΣY UΣ−1
UUΣUD

(
Λ−1 − Λ−1ΣDUΣ

−1
UUΣUDΛ−1

)
= ΣY UΣ−1

UU

(
ΣUU − ΣUDΛ−1ΣDU

)
Σ
−1
UUΣUDΛ−1

= ΣY UΣ
−1
UUΣUDΛ−1

(20)

The third equality is due to (19).

From (12),

µPITC
Y |D = µY + ΓY D (ΓDD + Λ)−1 (zD − µD)

= µY + ΣY UΣ
−1
UUΣUDΛ−1 (zD − µD)

= µY + ΣY UΣ
−1
UUzU

= µD2FAS
Y .

The second equality is due to (20). The third equality fol-
lows from

ΣUDΛ−1 (zD − µD) =

K∑
k=1

ΣUDkΣ−1
DkDk|U (zDk − µDk )

=

K∑
k=1

żkU = zU .

From (13),

ΣPITC
Y Y |D

= ΣY Y − ΓY D (ΓDD + Λ)−1 ΓDY

= ΣY Y − ΣY UΣ
−1
UUΣUDΛ−1ΣDUΣ−1

UUΣUY

= ΣY Y −
(

ΣY UΣ
−1
UUΣUDΛ−1ΣDUΣ−1

UUΣUY

−ΣY UΣ−1
UUΣUY

)
− ΣY UΣ−1

UUΣUY

= ΣY Y − ΣY UΣ
−1
UU

(
ΣUDΛ−1ΣDU − ΣUU

)
Σ−1

UUΣUY

−ΣY UΣ−1
UUΣUY

= ΣY Y −
(

ΣY UΣ−1
UUΣUY − ΣY UΣ

−1
UUΣUY

)
= ΣY Y − ΣY U

(
Σ−1

UU − Σ
−1
UU

)
ΣUY

= ΣD2FAS
Y Y .

The second equality follows from (14) and (20). The fifth
equality is due to (19).


