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ABSTRACT
This work aims to present a distributed sliding-horizon con-
trol technique, applied to the control of an urban traffic net-
work, where the control agents follow a satisficing approach
coordinating themselves to obtain a solution that is satis-
factory for all agents. The coordination mechanism finds,
in a distributed way, the analytic center of the region where
all agents are satisfied. We show that the analytic center
is also Pareto optimal. Our approach is compared to the
centralized one where, instead of a coordination mechanism,
the solution is based on a fixed and ad hoc adjustment of
the relative importance of the agents.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical Anal-
ysis—Optimization; I.2.11 [Computing Methodologies]:
Artificial Intelligence—Distributed Artificial Intelligence; J.7
[Computer Applications]: Computers in Other Systems

General Terms
Performance, Design, Theory

Keywords
satisficing control, satisficing theory, multiagent control sys-
tem, urban traffic control

1. INTRODUCTION
Traffic congestion, delays, and emissions of pollutants are
recurring issues in dealing with urban traffic control and
management [11]. Efforts to mitigate these problems are so
diverse as the improvement and expansion of the existing
traffic infrastructure, the implementation of control policies
with priority for public transport, and the deployment of
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real-time traffic control systems. Examples of such control
systems are PRODYN [6], OPAC [7], RHODES [10], and
feedback control strategies based on the linear-quadratic reg-
ulator [4] and sliding-horizon control [3]. The feedback con-
trol strategies are inherently robust as has been observed in
field studies [5]. Despite the increased performance of such
control systems, the signaling control of traffic lights is car-
ried out mostly using fixed-time control, in part due to its
simplicity and mainly because of its low implementation and
maintenance cost.

The present work aims to simplify the design, installation,
and reconfiguration of sliding-horizon control techniques by
carrying out sensing and control in a distributed manner,
and also to improve the control performance using a satis-
ficing multiagent system. In the satisficing approach, the
agents try to attain a performance at least greater than
their minimum specified level of performance but also, and
very important, they coordinate themselves to obtain a so-
lution that is satisfactory to all agents. The satisficing ap-
proach also allows negotiation between the agents when their
minimum level of performance can not be simultaneously
achieved. Although essentially different in its methods, our
approach has a philosophical trace to Satisficing Theory [12]
and Satisficing Control [8].

The contribution of this paper to the problem of traffic light
control is twofold: one is the definition of a minimum level of
performance and a negotiation policy that permit the agents
to coordinate themselves, and the other is a mechanism for
coordination. The coordination mechanism is to find, in
a distributed way, the analytic center of the region where
all agents are satisfied. We show that the analytic center
is also Pareto optimal. Our approach is compared to the
centralized one where, instead of a coordination mechanism,
the solution is based on a fixed and ad hoc adjustment of
the relative importance of the agents.

2. TRAFFIC DYNAMIC MODEL
In general, urban traffic networks are formed by junctions
connected by road links where traffic lights may be used to
coordinate the conflicting traffic flows. Among other possi-
bilities [4], the traffic lights set the percentage of green time
allocated to each link.

For this work, we will consider the network in Figure 1 with



eight junctions and one traffic light at each link approach-
ing a junction. We can see that the network of Figure 1
can easily be represented by the directed graph of Figure
2, where the nodes are the junctions m ∈ M and the links
(i, j) ∈ E ⊂M×M are the arcs connecting the nodes. The
state variable xi,j represents the number of vehicles (queue)
in the link from node j to the affected node i.
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Figure 1: Example of a traffic network. The state
variable xi,j is the number of vehicles (queue) of
junction i affected by junction j.
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Figure 2: Graph for the traffic network example.

The interaction between nodes can be generalized assuming
a generic node m and a set of input nodes I(m) = {i1, ..., iI}
and output nodes O(m) = {j1, ..., jO} as in Figure 3. For
example, node 3 has as input nodes I(3) = {1, 4} and as
output node O(3) = {2}. We divide the input nodes in
internal and external nodes, for example I(7) = II(7)∪IE(7)
where II(7) = {6} is internal and IE(7) = {∅1} is external.

...

...

Figure 3: Illustration of input and output nodes of
a node m.

The mathematical model chosen to describe the dynamics
of the vehicle queues is based on the model known as store-

and-forward [4] and is given by:

xm(k + 1) = Amxm(k) +
∑

i∈I(m)∪{m}

Bm,iui(k) (1)

where the vector xm(k) = (xm,i1(k), ..., xm,iI (k)) are the
queues of junction m influenced by the green time signals
ui(k) = (ui,i1(k), .., ui,iI (k)) at instant k.

In this model, the matrix Am is the identity, matrix Bm,m
expresses the discharge of queues xm as a function of green
times um, and matrices Bm,i, i ∈ I(m), represent how
queues xm build up as queues xi are emptied by ui green
times. Matrices Bm,i, i ∈ I(m) ∪ {m}, are functions of the
physical characteristics of the traffic network. For the ex-
ample, consider node 3 for which its matrices are:

B3,3 = T3

[
−S3,1

C3
0

0 −S3,4

C3

]

B3,1 = T3

[
ρ3,1,∅1 ·

S1,∅1
C1

ρ3,1,∅2 ·
S1,∅2
C1

ρ3,1,∅3 ·
S1,∅3
C1

0 0 0

]

B3,4 = T3

[
0 0

ρ3,4,∅1 ·
S4,∅1
C4

ρ3,4,∅2 ·
S4,∅2
C4

]
where T3 is the sample time (in seconds), Si,j is the satu-
ration flow on the link from j to i (in vehicles per second),
ρm,i,j is the rate at which vehicles from link j to i enter link
i to m, and Ci (in seconds) is the cycle time of junction i as
explained below. Notice that the entries in B3,3 are nega-
tive, indicating queue discharge as a function of green time
signals u3.

The concept of cycle time is illustrated in Figure 4. Each cy-
cle is composed by stages meaning a particular traffic light
configuration. In the example of Figure 4, after stage 3,
stage 1 repeats starting another cycle. From one stage to
another there is a lost time added to avoid interference be-
tween stages. The sum of all green times plus lost times in
a junction gives the cycle time for that junction.

lost time

cycle time

stage 1 stage 2 stage 3

green

green

green

Figure 4: Illustration of the cycle time.

Three constraints are imposed to the junctions:

Constraint 1: The sum of the green times um,i and lost
time Lm,i must be equal to the cycle time Cm of the
junction m to which they belong,∑

i∈I(m)

um,i + Lm,i = Cm, ∀m ∈M



Constraint 2: The green times can not be negative,

um ≥ 0, ∀m ∈M

Constraint 3: The states are always nonnegative,

xm ≥ 0, ∀m ∈M

3. DISTRIBUTED SATISFICING CONTROL
We propose a distributed approach to control the green time
of the traffic lights, where a satisfactory global solution for
the entire network is obtained from the specification of the
agents. A convenient arrangement is to allocate one agent
to each subsystem. In other words, for each node m ∈M =
{1, . . . ,M}, the set of all nodes, we associate an agent Am
belonging to the agent set A = {A1, . . . ,AM}.

Our agents apply a sliding-horizon control scheme where
agent Am, m ∈ M, calculates a plan of actions for Nu

m

periods ahead of the current time so that the evolution in
Np
m periods of its states is satisfactory given a criterion. Nu

m

and Np
m are called control and prediction horizons respec-

tively. Given the initial state xm(0) of subsystem m, the
predicted states are given by the following equation:

x̃m = Ãmxm(0) +
∑

i∈I(m)∪{m}
B̃m,iũi

ỹm = C̃mx̃m

ym(0) = Cmxm(0)

with

x̃m =


xm(1)
xm(2)

...
xm(Np

m)

 , ỹm =


ym(1)
ym(2)

...
ym(Np

m)

 , ũi =


ui(0)
ui(1)

...
ui(N

u
m − 1)

 ,

Ãm =


Am

(Am)2

...

(Am)N
p
m

 , C̃m =

Cm . . .

Cm

 ,

B̃m,i =


I 0 · · · 0

Am I · · · 0
...

...
. . .

...

(Am)N
p
m−1 (Am)N

p
m−2 · · · (Am)N

p
m−N

u
m

Bm,i

where vector x̃m is the predicted states Np
m periods ahead,

and vector ũm = (um(0),um(1), . . . ,um(Nu
m − 1)) consti-

tutes the action plan of agent Am, Nu
m periods ahead.

The prediction model can be restated in a compact form as:

x̃m = Ãmxm(0) + B̃mṽm (2)

where B̃m =
[
B̃m,m B̃m,i1 · · · B̃m,iI

]
and the vector

ṽm = (ũm, ũi1 , · · · , ũiI ) = (ũm, ũI(m)) is called the plan
profile of agent Am, Nu

m periods ahead.

3.1 Agent Behavior
Our goal through the following subsections is to model an
appropriate behavior for the agents so as to accomplish their
objectives and restrictions and to guarantee, in a distributed
way, individual and global specified criteria of performance.

The satisficing theory [13, 12] proposes that the objectives
of the agents should be evaluated using two indexes, one re-
lated to the goals (which therefore should be maximized) and
the other related to the cost of energy or resources (which
therefore should be minimized). These indexes will serve as
a basis for establishing the behavior of the agents.

Definition 1. Selectability (fS) is the index of the use-
fulness of the actions with respect to the objective.

Definition 2. Rejectability (fR) is the index of the cost
associated with the actions.

While the selectability function is normally concave since
the usefulness of the actions should be maximized, the re-
jectability function is typically convex because the cost of
the actions should be minimized.

Selectability and rejectability are the building blocks for the
utilities of the types of agents that will be considered in the
sequel, namely selfish and satisficing agents.

3.2 Selfish Agents
Defining the symmetric matrices Q̃m � 0 (positive semi-

definite) and R̃m � 0 (positive definite) as:

Q̃m =

Qm . . .

Qm

 , R̃m =

Rm . . .

Rm


of appropriated dimensions, we define the selectability and
the rejectability of agent Am by the following functions:

fS,m = −x̃′mQ̃mx̃m (3)

fR,m = ũ′mR̃mũm (4)

The selfish utility of agent Am is given by:

fm(ṽm,xm(0)) = fS,m − αmfR,m, αm > 0

that depends on its plan profile and on its initial state (initial
queues). From now on we will omit the dependence of the
utility on the initial state.

The maximization of the selfish utility expresses the desire
of the agent to maintain the queues and the green times
close to zero, the stable equilibrium.

3.3 Satisficing Agents
In a cost versus benefit analysis, any action that results in
an acceptable selectability compared to the rejectability is a
defensible choice that belongs to the satisficing set.

Definition 3. Satisficing Set: the region S of the do-
main where the difference between selectability and an ad-
justed rejectability results more than a minimum acceptable
level of utility, formally

S = {ṽ|f(ṽ) = fS(ṽ)− α · fR(ṽ) ≥ β}



with α ∈ [0,∞) denoting the sensitivity to cost with respect
to the benefit and β ∈ R being the minimum acceptable level
of utility, or satisfaction. Any solution that belongs to the
satisficing set is a satisficing solution.

The objective of the satisficing agent Am is to find a satisfic-
ing solution, where its selfish utility fm results greater than
a minimum level of satisfaction βm. For the urban traffic
application, we define

βm = Np
m(−xs′

mQmxs
m) (5)

where xs
m are the maximal, but still satisfactory, average

queues of junction m. This definition of βm expresses the
desire of the agent to maintain the average queues less than
the satisfactory maximal queue.

3.4 Coordination of the Satisficing Agents
In a multiagent system, the agents should coordinate them-
selves to reach a satisfactory collective solution.

The classical way to define a global utility H for a set of
M agents is through a scalarization approach [1] according
to which the interests of selfish agents are aggregated as a
function

H(ṽ) =

M∑
m=1

wmfm(ṽm), wm > 0, ∀m ∈M

of the vector ṽ = (ũ1, . . . , ũM ). The decision process is
centralized and defined by the following problem over ṽ:

PC :

Maximize H(ṽ) =
M∑
m=1

wmfm(ṽm)

subject to ṽ ∈ D̃
(6)

where D̃ is a generic convex domain. One characteristic
of this problem is that any optimal solution ṽ? to problem
PC is Pareto optimal. Another characteristic is that the
adjustment of wm defines a particular solution in the Pareto
set.

In a distributed system, on the other hand, a solution is
reached by the interactions of the agents. Selfish agents
produce a Nash point that is normally not Pareto. Instead,
we will apply the satisficing agents which solve the following
satisficing problem:

P S
m :


find ũm ∈ D̃m
such that: fm(ṽm) ≥ βm

fj(ṽj) ≥ βj , ∀j ∈ O(m)

(7)

where each agent Am tries to find a satisficing solution for
itself and for the affected agents.

The interactions of the satisficing agents will produce a so-
lution in the jointly satisficing set,

S , {ṽ : fm(ṽm) ≥ βm,∀m ∈M}

Notice that in this case we have not just one solution but a
set of possible solutions.

Theorem 1. The analytic center ṽ† = (ũ†1, · · · , ũ
†
M ) of

the satisficing set S = {ṽ : fm(ṽm) ≥ βm, ∀m ∈ M} is
Pareto optimal and equivalent to the centralized solution with
wm = 1/(fm(ṽ†m)− βm).

We call coordination the process by which the agents, in a
distributed manner, try to find a jointly satisficing solution
and, in particular, the analytic center of the satisficing set.

The constrained analytic center of the satisficing set is ob-
tained in two phases. In phase I a feasible solution ṽs for
which fm(ṽs) ≥ β for all m ∈ M is calculated and used in
phase II for the computation of the analytic center ṽ† of the
satisficing set.

The phase I problem of agent Am is of the form:

F I
m(ũ¬m) : min

ûm

F I
m(ûm|ũ¬m) =

∑
j∈Õ(m)

sj

s.t. : fm(ũm|ũ¬m) ≥ βm − sm
fj(ũm|ũ¬m) ≥ βj − sj , ∀j ∈ O(m)

sj ≥ 0, ∀j ∈ Õ(m)

ũm ∈ D̃m

(8)

where ûm = (ũm, s̃m), s̃m = (sj : ∀j ∈ Õ(m)), Õ(m) =
O(m)∪ {m} and ũ¬m denotes the action plan of the agents
but agentAm. Let v̂I = (ûI

1, . . . , û
I
M ) be an optimal solution

to the set of problems {F I
m}m∈M. If F I

m(v̂I) = 0 for all m ∈
M, then the satisficing set is nonempty. If F I

m(v̂I) > 0 for
any m, then there does not exist a simultaneously satisficing
solution for all the agents, in which case {m ∈M : sm > 0}
is the subset of agents that cannot be satisfied.

Phase II solves, starting from the solution found in phase I,
the set {Fm}m∈M of problems given by:

Fm(ũ¬m) : min
ũm

Fm(ũm|ũ¬m) =

−
∑

j∈Õ(m)

log(fj(ũj |ũ¬j)− βj)

subject to ũm ∈ D̃m

(9)

where the functions Fm(ũm|ũ¬m), called log barrier func-
tions [1], force the solution to the analytic center of the
satisficing set.

Phase I and II problems can be solved by the agent set A
using a distributed interior-point method. The convergence
analysis presented in [2] ensures that the iterative solution
of the set of problems in phase I and II converges to the
analytic center when only nonneighboring agents iterate in
parallel.

In every cycle, the coordination of the agents is achieved
by the calculation of the analytic center of the problem set
{P S

m}m∈M. According to Theorem 1, the analytic center re-
sults in a Pareto solution. This Pareto solution is equivalent
to that obtained by a centralized solution if wm where not
fixed. However, the centralized approach uses fixed weights
that are adjusted in an ad hoc manner.



3.5 Negotiation
From the definition of the satisficing set it can be seen that
a smaller sensitivity α and/or a smaller satisfaction β lead
to bigger satisficing sets. So, when the agents can not be
simultaneously satisfied, they have to negotiate adjusting
their sensibility to cost or adjusting their minimum level of
satisfaction.

4. SIMULATION RESULTS
This section presents the application of distributed satisfic-
ing agents to the control of the 8-junction urban traffic net-
work shown in Figure 1. The experimental analysis aims to
assess the performance of the distributed satisficing control
approach by comparing it to a centralized approach. The
satisficing agents solve the set {P S

m}m∈M of analytic center
problems and a centralized agent solves PC, while respecting
the constraints described in Section 2.

The centralized problem and the analytic center of the sat-
isficing problems were simulated in Matlab and solved using
CVX [9], a package for specifying and solving convex pro-
grams.

4.1 Experimental Setup
There are only four parameters that must be defined by
the user, with the advantage that all of them have physical
meaning. They are:

P.1) The satisfactory maximal average queues xs
m: an aver-

age queue that still is acceptable at each link of junc-
tion m.

P.2) The capacity of the links: the maximum number of
vehicles that the link can support.

P.3) The prediction horizon Np
m.

P.4) The cycle time Cm.

For this simulation, the satisfactory maximal average queue
was defined as two times the maximal discharge obtained
by the nominal green time set as unom

1 = (40, 40, 40) and
unom
2..8 = (60, 60), that is, xs

m = −2Bm,munom
m for all m ∈M.

The capacity of the links were set as three times the satis-
factory queue, but in a real application the capacity is easily
assessed based on the dimensions of the link. The prediction
horizon was chosen equal to 5 minutes (300 seconds) and the
cycle time equal to 2 minutes (120 seconds), for all agents.

The remaining parameters were set according to the follow-
ing rules:

R.1) Tm = Cm: the sample time Tm was made equal to the
cycle time for all agents.

R.2) Nu
m = Np

m: the horizons were made equal in all junc-
tions.

R.3) Matrix Rm = 0: in our simulation traffic signaling
does not incur any cost. Green times should not be
penalized.

R.4) Matrix Qm = diag(1/capm,i : i ∈ I(m)): the matrix
Qm was set diagonal with its elements equal to the
inverse of the capacity of each link that approaches
junction m, as proposed in [4].

R.5) βm = Np
m(−xs0′

m Qmxs0
m), where

xs0m,i = max(xsm,i, xm,i(0)) ∀i ∈ IE(m)

xs0m,i = xsm,i ∀i ∈ II(m)

With the original definition of βm (see Equation 5), an ex-
cessive number of vehicles coming from outside may become
impossible for the system to maintain all the queues less that
the satisfactory maximal average. In rule R.5, the original
definition of βm is modified to incorporate the negotiation
policy chosen for the network. For this experiment, the ne-
gotiation policy is to maintain the specification of the in-
ternal nodes and degrade only the nodes receiving vehicles
from outside the system allowing them to accumulate more
vehicles. Observe that because nodes 2, 3, 5 and 6 have only
internal input nodes, their minimum level of satisfaction is
not modified by rule R.5. On the other hand, nodes 1, 4, 7
and 8 tolerate external queue sizes greater than the satis-
factory, tolerating at least their actual number of vehicles,
whatever it is.

The network physical parameters, saturation flows Si,j in
vehicles per minute and conversion rates ρm,i,j in percent-
age, are in the appendix.

4.2 Experimental Analysis
The analysis of the satisficing agents was made against a cen-
tralized one in which weights were set wm = 1 for allm ∈M.
Notice that the tuning of the centralized agent is based on an
ad hoc definition of weights. We are considering a constant
arrival of vehicles in node 1 and 4 equal to (5, 15, 10) and
(10, 10) respectively, and initial queues x1(0) through x8(0)
as (10, 50, 20), (60, 20), (5, 35), (120, 30), (10, 20), (9, 20),
(15, 20) and (17, 9).

Figures 5 to 10 show the evolution in 10 cycles (20 minutes)
of the vehicle queues, the calculated green times, and the
utility of the satisficing and centralized agents, respectively.
The bars show the vector components stacked from below.
For example, in Figure 5, the components of the vector x1 =
(x1,∅1, x1,∅2, x1,∅3) are in black, gray and white respectively.

We can see in Figures 5 and 6 that the satisficing agents
A1 and A4 accumulate more queues than the centralized
agent although agent A4 starts to decrease its queues after
a moment of increase. Something impedes A1 to maximize
its time of green and also forces A4 to postpone in 1 cycle
any relevant green time.

The reason is that agents A1 and A4 have a compromise
with the satisfaction of the internal agents due to the solu-
tion of the satisficing problems and due to the negotiation
scheme induced by rule R.5. Due to the negotiation rule,
we can see in Figures 5 and 6 that agents A1 and A4 adjust
their minimum level of satisfaction (dash-dot line) to per-
mit lower utilities (solid lines) and to accommodate more
queues. Remember that the policy we chose was to main-
tain the specification of the internal nodes and degrade only
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Figure 5: Control in junction 1.
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Figure 6: Control in junction 4.

the nodes receiving vehicles from outside the system. This
compromise is difficult to obtain in the centralized control
due to its ad hoc nature.

In Figures 7 and 8 we see that the discharge made by the
centralized agent overcharges node 5 and node 6 making it
unable to maintain the sum of the corresponding queues be-
low the maximal satisfactory (horizontal line indicated by an
arrow) even with the maximal of green (120 seconds). In the
centralized case, the utility of nodes 5 and 6 are very below
the minimum level specified for agents A5 and A6 (horizon-
tal dash-dot line) indicating their dissatisfaction. We chose
to show only the internal junctions 5 and 6 because they
suffer the highest effect.

The satisficing agents also seem to present a better behavior
in the presence of model error. Figures 9 and 10 show the
behavior of junction 5 and 6 when the rates of flow coming
from junction 4 are greater than what is expected by the
nominal model. In this case, instead of 30%, the flow from
junction 4 to junction 5 is 70% of the junction total flow.
We see that the satisficing agents maintain the queues in a
satisfactory level while the centralized agent builds up the
queues even more.
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Figure 7: Control in junction 5.
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Figure 8: Control in junction 6.

5. CONCLUDING REMARKS
The satisficing approach offers a mechanism of coordination
that, applied to an urban traffic network, has the following
advantages if compared to a centralized classical approach:

• the adjustment of the agents are based on physical pa-
rameters instead of the ad hoc adjustment of weights;

• the definition of the minimum level of satisfaction gives
meaning to the control objectives;

• the negotiation policy offers a mechanism to alleviate
the control objectives in case of infeasibility and is flex-
ible enough to accommodate other strategies. For ex-
ample, instead of penalizing only the junction that re-
ceives vehicles from outside the system, one can define
a negotiation policy where all the agents reduce their
minimum level of satisfaction;

• and it seems to be more robust to model error.

It is also worth to mention that any satisficing solution, not
only the analytic center, is good enough to make the agents
satisfied. This fact can be used to simplify the distributed
algorithm and reduce decision time.
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Figure 9: Junction 5 under model error.

−2 0 2 4 6 8 101214161820
0

20

40

60

80

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

−2 0 2 4 6 8 10 12 14 16 18

−300

−250

−200

−150

−100

−50

0

−2 0 2 4 6 8 101214161820
0

20

40

60

80

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

−2 0 2 4 6 8 10 12 14 16 18

−300

−250

−200

−150

−100

−50

0

Figure 10: Junction 6 under model error.
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APPENDIX
A. PROOF OF THEOREM

Theorem 1. The analytic center ṽ† = (ũ†1, · · · , ũ
†
M ) of

the satisficing set S = {ṽ : fm(ṽm) ≥ βm,∀m ∈ M} is
Pareto optimal and equivalent to the centralized solution with
wm = 1/(fm(ṽ†m)− βm).

Proof. (1) An optimal solution ṽ? = (ũ?1, · · · , ũ?M ) to
the unconstrained centralized problem PC : maxṽH(ṽ),

where H(ṽ) ,
∑M
m=1 wmfm(ṽm) and wm > 0, is Pareto op-

timal. An optimal solution is obtained when ∇ṽH(ṽ?) = 0,

that is, when
∑M
m=1 wm∇fm(v?m) = 0, because H is con-

cave. (2) On the other hand, the analytic center of the satis-
ficing set S is obtained by solving the problem minṽ{F (ṽ) =∑M
m=1− log(fm(ṽm)−βm)}. A solution is given by∇ṽF (ṽ†) =∑M
m=1

1

fm(ũ
†
m)−βm

∇fm(ũ†m) = 0 because F is convex. From

(1) and (2), it follows that the analytic center coincides with
the solution obtained by solving the centralized problem
with wm = 1/(fm(ṽ†m)− βm).

B. NETWORK PHYSICAL PARAMETERS
The network physical parameters, saturation S in vehicles
per minute and direction rate ρ in percentage, are: S1,∅1 =
5, S1,∅2 = 30, S1,∅3 = 15, S2,1 = 20, S2,3 = 25, S3,1 =
5, S3,4 = 25, S4,∅1 = 30, S4,∅2 = 15, S5,1 = 5, S5,4 =
7, S6,1 = 9, S6,5 = 7, S7,6 = 7, S7,∅1 = 10, S8,7 = 7,
S8,∅1 = 5, ρ2,1,∅1 = 25, ρ2,1,∅2 = 70, ρ2,1,∅3 = 25, ρ2,3,1 = 40,
ρ2,3,4 = 80, ρ3,1,∅1 = 7, ρ3,1,∅2 = 7, ρ3,1,∅3 = 20, ρ3,4,∅1 = 70,
ρ3,4,∅2 = 70, ρ5,1,∅1 = 8, ρ5,1,∅2 = 8, ρ5,1,∅3 = 20, ρ5,4,∅1 =
30, ρ5,4,∅2 = 30, ρ6,1,∅1 = 60, ρ6,1,∅2 = 15, ρ6,1,∅3 = 35,
ρ6,5,1 = 60, ρ6,5,4 = 90, ρ7,6,1 = 90, ρ7,6,5 = 90, ρ8,7,6 = 90,
ρ8,7,∅1 = 50.


