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ABSTRACT
In public transportation the question of how to achieve a
good match between demand and capacity is essential for
operators to provide a high quality service level within rea-
sonable costs. Agent-based micro-simulation is a promising
method to evaluate the impact of operational decisions and
selected tariffs at both the level of the individual passen-
ger and the aggregate level of the operator. During recent
years, this technique has been applied successfully to sev-
eral large scale real life cases. However, the demand of the
agent population in these simulations is usually derived from
aggregated census data and surveys conducted among a rel-
atively small sample of the travelers. With the advent of
smart card ticketing systems new opportunities to generate
an agent population have surfaced. We use a unique smart
card dataset containing four months of individual mobility
data from passengers among three modalities in an urban
Dutch public transportation system to generate agent pop-
ulations. We model the temporal flexibility of agents based
on patterns observed in the check-in/check-out behavior of
individual travelers. We then run simulations to study how
these agent populations react to a discounted tariff in the
off-peak hours. Finally, we discuss opportunities to improve
our approach in the future.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Miscella-
neous

General Terms
Experimentation, Algorithms, Management

Keywords
Agent Based Micro-simulation, MATSim, Pattern Based De-
mand, Public Transport, Revenue Management, Smart Card
Data

1. INTRODUCTION
In public transportation systems without seat reserva-

tions, the question of how fluctuating demand can be ser-
viced in a cost-efficient way poses a major challenge. Peaks
in demand have a high toll on the costs, since they dictate
the required amount of staff and the number of vehicles,
while vehicles that are almost empty generate a net loss for
the operator. Tools that allow the public transport operator
to evaluate the effects of operational and strategic decisions

on costs and demand are therefore vital to achieve the goal
of improving the service quality and financial performance.
However, most of the tools used in practice aggregate the
passengers to homogeneous flows, either because detailed
data is not available, or to reduce the complexity the de-
cision maker has to face. During recent years, smart card
systems have been introduced that log all movements of in-
dividual passengers through the systems. This gives a lot
of detailed data that was previously unavailable. However,
given the body of research related to smart card data, we
can see that incorporating such data into the tools used for
decision making is a non-trivial task [17].

A promising approach is agent-based micro-simulation. In
such a simulation, individual passengers and vehicles are
modeled through agents that interact with the public trans-
portation system according to their individual goals. In this
paper, we will use the MATSim simulation package [1] which
has an active user-base and has been applied to a number
of large scale scenarios. Within MATSim, all agents try to
adapt their plans in such a way that their utility is improved.
The simulation runs until there is no significant improve-
ment within the agent population, i.e. until the population
reaches an approximate equilibrium.

The major issue in generating an agent population from
real life observations is the question how we can prevent
agents to divert from this equilibrium in an unrealistic way,
without restricting the agents in such a way that their only
preference is to replicate the observed state.

We will limit our field of application to the study of rev-
enue management. In revenue management[21] we want to
control demand by adapting our pricing strategy in such a
way that we get a better match between the available ca-
pacity and the demand emerging from the population. Our
population can try to adapt to our pricing strategy by shift-
ing the time at which they travel. We will study how the
population reacts to an off-peak discount, but we believe
that our approach is suitable for many other applications.
One idea is to include the choice for mode of transport.

When generating our agent population, we run into the
problem that the number of observed journeys differs a lot
between individual passengers. We solve this problem by
combining three types of demand that we can detect in our
smart card dataset: trip-based, tour-based and pattern-based
demand. Our first goal is to show how we can efficiently gen-
erate the agent population from our smart card data using
these three demand models. Our next goal is to discuss how
we can experiment with different parameters for the demand
models to study revenue management. The final goal is to



discuss our results and how we can improve our methods in
the future.

The remainder of this paper is organized as follows: in
Section 2 we discuss prior literature and related work. In
Section 3 we discuss smart card datasets in general and our
dataset in particular. Section 4 addresses the modeling of
demand, based on the smart card dataset. In Section 5
we discuss the simulation and our experimental setup. We
present the results of our experiments in Section 6. Finally,
we discuss our results and opportunities for extensions of
our approach in Section 7.

2. RELATED WORK
In recent years, smart card ticketing systems have at-

tracted notable attention from the research community. A
recent literature review on the use of smart card data in
public transportation is given by [17]. They divide the stud-
ies into three categories: strategic-level studies, tactical-level
studies and operational level studies. Since some of the pub-
lic transportation systems only work with check-ins, part of
the literature focuses on estimating the destination of pas-
sengers given their check-in location and time (for example,
[23]). Some literature describes how the behavior of pas-
sengers can be analyzed. A notable example is [15], where
spatial and temporal variations are measured across different
types of cards. However, the literature review [17] contains
not a single reference to the use of smart card data within a
simulation context. Moreover, their conclusion contains the
following quote:

For the mass of data available on individual trips,
new modeling methods will be needed, such as
the Totally Disaggregate Approach, because clas-
sical models cannot be used at a such detailed
level of resolution. [...] It will then be possible to
calibrate individual base models from these large
datasets. [17]

In the simulation of road traffic, microscopic simulation
models have been a topic for quite some years. In the
1990’s, it was mostly a topic studied as a field of application
for super computers [10]. With the increase of computing
power, more applications emerged in the 2000’s, including
[22]. With the introduction of MATSim [1], we saw a rise
in literature related to micro-simulation. MATSim has been
applied to some very large scale scenarios, including simu-
lations of Berlin [19] and Zürich [13], both including more
than a million individual travelers. Recently, MATSim was
expanded from the simulation of road traffic, to the simula-
tion of public transportation as well [18]. The website of the
project contains a list with the most important publications
related to the project and is updated regularly.

The kind of microscopic demand which is fundamental in
the design of MATSim, is called activity-based demand [9]
and was already discussed in the context of micro-simulation
by [14] in 1997. This is an approach where travel demand is
modeled by means of the activities the individual travelers
want to perform over the day. One way to record the activ-
ities of individual travelers is by using surveys (for example
[5]). In recent studies, census data was used to perform this
synthesis of the activity based demand [4]. A survey on this
approach to demand generation is given by [16].

Apart from modeling the activity patterns of travelers, a
lot of research regarding the behavior of travelers has been

performed, resulting in many sophisticated methods. Most
notably, we would like to mention the field of discrete choice
modeling [7], since it has spawned a lot of research within
the domain of transportation. One of the main tools within
discrete choice modeling is the stated-choice survey, where
respondents have to select their preferred alternative.

A comprehensive textbook on revenue management is [21].
The focus of studies related to revenue management has been
on systems where reservations are made in advance. In our
setting, however, we do not have a mechanism where we can
decide whether we accept new customers. This is different
from, for example, long distance trains and the airline indus-
try where tickets are always bought in advance. An example
of a study related to revenue management in a comparable
railway setting is [12]. This study shows some of the diffi-
culties in applying revenue management within our context.
An example of a succesful application for long distance trains
with seat reservations is [8].

3. SMART CARD DATA
During recent years, the Dutch smart card, called “OV-

chipkaart” was introduced as a cross-operator travel prod-
uct. Starting from 2009, the smart card was made the
mandatory product of travel in major Dutch cities, such as
Amsterdam and Rotterdam, replacing paper tickets. One of
the unique features of the Dutch system is that passengers
have to check-in and check-out with the smart card in all
modes of travel, including railways.

We use data collected from smart card usage over the
course of four months from a major public transport opera-
tor in the Netherlands. During this period, the only avaible
tickets were different smart card products. The transactions
in our dataset denote either a check-in or check-out in a vehi-
cle or on a platform. Moreover the smart card data contains
the mode of travel, the unique id of the chip on the smart
card (which we will call the media id), the time stamp of the
transaction (in seconds) and the location of the transaction.
Due to the sensitivity of the data for the operator and pri-
vacy concerns for the passengers, we will only show relative
numbers and figures in this paper.

We prepared our raw dataset of almost 60 million trans-
actions in such a way that we could process each transaction
sequentially. We had to split up the dataset into separate
chunks, using a round robin approach to assign media id’s
we had not seen before to a fixed chunk for that id. Af-
terwards, we sorted the separate chunks on media id and
time stamp in main memory. We combined the results into
a single dataset. While processing this set sequentially, we
would be sure to encounter all transactions belonging to a
certain media id together, with increasing time stamps.

After sorting the dataset, we linked check-ins and check-
outs to make trips. Passengers who forget to check-out gives
rise to inconsistencies in the dataset. It is relatively easy to
filter these inconsistencies out, by assuming that a consec-
utive check-in and check-out belong together. This is rea-
sonable, since the system has a maximum amount of time
after which a check-in becomes invalid. After this linking
step we know all the trips made by the passenger. Since the
passengers have to check-in and check-out in each vehicle,
we have separate trips when the passenger makes a transfer
on his journey. Another preprocessing step is to link consec-
utive trips that are close in time to each other into journeys.
This yields our main dataset. Figure 1a shows the numbers



of unique passengers traveling over the course of a typical
weekday. Figure 1b showsa histogram describing how many
journeys were made with a single smart card. As we can
see, most of the smart cards have made only a relatively low
number of journeys, but there are plenty of passengers with
many journeys.

4. DEMAND MODELING
When it comes to demand modeling for the simulation

of public transport, a traditional approach is to use origin-
destination matrices estimated from sources such as census
data and manual counts of the number of passengers in some
sampled vehicles [16]. The main drawback of this approach
is that it becomes very difficult and expensive to measure
the exact progression of passenger flows over the day. With
smart card data, we know the origin, destination and exact
time of travel of each individual travel, which allows for new
opportunities with respect to measuring these flows.

Regarding flows of passengers in the network, we can take
different approaches. The basic approach is to consider a
flow through the network as a set of journeys: passengers
who travel from a certain origin to a certain destination at
a certain time. We will refer to this approach to demand
as trip-based demand. However, in many cases there will be
passengers who travel multiple times within the same day.
In many of these cases, their consecutive journeys combine
to a tour from origin to origin, with some intermediate des-
tinations. In such cases, events happening at one of the
intermediate destinations, will also influence the events in
the remainder of the tour. Since our goal is to model in-
dividual passengers instead of aggregated flows, these tours
contain valuable information. We will refer to this approach
to demand as tour-based demand.

In activity-based micro-simulation, each individual trav-
eler can be represented by an agent and this approach thus
allows for microscopic analysis of a public transport system.
The drawback is that we need a lot of information to model
these agents. Even if we assume that all activities take place
at a station, not all required information is available in the
smart card data. The smart card data tells us where, when
and how people travel, but it doesn’t tell us why people
travel, which is something that is vital to activity-based de-
mand modeling.

Not all is lost, however: the traditional approach uses
various statistical methods and interpolation techniques to
fill the gaps of unknown information, in order to be able
to simulate a public transport system. We can apply such
an approach to the smart card data as well: we use the
information which is available, such as location, modality
and time of travel as much as possible and fill the gaps of
information using estimation methods.

We will refer to the approach that goes beyond the notion
of tour-based demand, but does not yet reach the precision
of activity-based demand, as pattern-based demand. In a
broad sense, we define pattern-based demand as demand
produced by activities of such a nature that certain pat-
terns will emerge in the travel behavior of passengers who
perform the activity routinely. The most typical example
of such an activity is working, since people usually work at
regular times at a certain location. Other types of activities
are education (which is usually bound to a schedule that
may or may not change regularly), a periodic visit to family
members and visiting sports events. In this paper, we will

focus on patterns generated from working activities, since
we believe that these will be most easy to recognize. In ad-
dition to this, we will consider educational activities with a
fixed schedule as working activity, since the implications for
the temporal flexibility of a passenger are usually similar.
To summarize, we have:

Trip-based demand Demand with only a single journey.

Tour-based demand Demand consisting of a tour of jour-
neys, with consecutive arrivals and departures at the
same station. Also, the first and last station are equal.

Pattern-based demand Demand that exhibits a recur-
ring pattern, produced by some regular underlying be-
havior of the passenger (which is possibly unkown).

4.1 Detecting customer patterns
Commuters usually live and work at the same place. This

leaves patterns of frequent home → work → home journeys
in the smart card data. We can scan consecutive journeys for
these patterns. This way we can derive an activity profile for
a customer. For the sake of convenience, we limit ourselves
to the class of activity profiles described in the following
definition:

Definition 1. Activity Profile
An activity profile is a tuple (l, bpref , epref , δb, δe) where

• The activity takes place at location l

• The preferred starting time of the activity is bpref

• The activity will not start before bpref − δb and not
after bpref + δb

• The preferred ending time of the activity is epref

• The activity will not end before epref−δe and not after
epref + δe

• The preferred duration of the activity is epref − bpref

Now for each passenger, we will try to decide whether he
is commuting and what his home and working stations are.
To do this, we have to make a few assumptions.

1. We assume that somebody who is commuting travels
a lot. Therefore, if the number of times traveled in
the considered dataset is not above a certain threshold
(which should be chosen according to the length of the
time period under consideration), we conclude that the
passenger is not a commuter.

2. We assume that a commuter has a fixed home and a
fixed location of work and that the stations associated
with these locations will be the two most frequently
visited stations. To be sure these frequent stations are
visited more frequently than other stations, we define
thresholds for the number of times they should occur.

3. We assume that, if we include weekends, someone will
spend more time at home than at work. Since we can
measure the time between a consecutive arrival and a
departure from a station, we classify the station where
the greatest amount of time is spent as the home sta-
tion.



(a) Demand histogram of a weekday (b) Histogram of the number of passengers that made a
certain number of journeys within 4 months

Figure 1: Demand as observed in the smart card dataset

4. We assume flexibility in time of travel and the length of
the working activity is represented by a certain amount
of variation in their travel times between their home
and working stations.

We use the first assumption to decide whether we will try
to recognize a pattern for a certain passenger at all. The
second and third assumptions can be used to recognize a
passenger’s home station and working station. Finally, we
use the fourth assumption to model the flexibility of a pas-
senger based on this variance. These assumptions give us
the following efficient algorithm:

Algorithm: Detecting Customer Patterns.

Parameters A minimum sample size θ, thresholds t0 and
t1 with 0 < t0, t1 ≤ 1

Input A set J of n journeys of a single passenger

Output A home station s and a pattern (t, bpref , epref , δb, δe)
that describes a working activity profile as defined in
Definition 1

Step 1 if n < θ then conclude there is no valid pattern

Step 2 Find stations a, b with maximal frequency as a start
or endpoint over the journeys in J

Step 3 Denote na, nb as number of journeys that have a
or b as a start or endpoint, n as the total number of
journeys in J

Step 4 if ¬(na ≥ t0n ∧ nb ≥ t1n) then conclude there is
no valid pattern else

Step 4a ∆a := average time difference between con-
secutive (a, b) and (b, a) journeys

Step 4b ∆b := average time difference between con-
secutive (b, a) and (a, b) journeys

Step 4c if ∆a ≥ ∆b then s := a; t := b else s :=
b; t := a

Step 5 Take the average arrival time of (s, t) journeys as
preferred starting time bpref

Step 6 Take the average departure time of (t, s) journeys
as preferred ending time epref

Step 7 Take the standard deviation of (s, t) arrival times
as the start time flexibility δb

Step 8 Take the standard deviation of (t, s) departure times
as the ending time flexibility δe

Step 9 return s, (t, bpref , epref , δb, δe)

It is not difficult to see that each of the steps can be
performed in time linear with respect to the set of journeys
J , except for Step 2, where we have to calculate frequency
statistics. To take the first and second most frequent station,
we can sort the stations based on their frequencies. Since at
most O(n) station occur in J , this gives a O(n logn) time
bound. In [20], it is discussed that this selection problem
takes O(n logn) time in general. Since there are no loops in
the algorithm, we may conclude that it runs in O(n logn)
time for a single passenger with n journeys.

4.2 Deriving the Agent population
We will now discuss how to derive an agent population

from our dataset. In the beginning of Section 4, we discussed
the difference between trip-based, tour-based and pattern-
based demand. Since there are smart cards that are used
only once and passengers who have highly irregular travel
patterns (because they don’t use public transport to com-
mute), we will not be able to derive a pattern for each cus-
tomer and we may not even be able to find a tour in the
data for each customer. Therefore, we will take a step-wise
approach, where we first try to calculate a pattern for a pas-
senger. If this succeeds, we will generate demand for this
passenger based on the pattern we found. If we fail to find
a pattern, we search for a tour and generate tour-based de-
mand by introducing dummy activities at the intermediate
stations of the tour. If we even fail to find a tour, we will
generate trip-based demand by generating agents for each
trip the customer made.

We will choose a single day (preferably not during the
weekend) to model. We first filter our dataset such that
we only retain customers that have traveled on that day.
After filtering, we decompose our dataset into three parts:
one group contains customers of which we know a lot, one



group contains customers of which we have a tour and lastly,
one group of customers with a single or unpredictable travel
pattern. For each customer, we will have to generate an
activity plan for the day. We will take a different approach
to the generation of plans for each group of customers.

A plan for the day is a list of activity profiles with planned
ending times for all activities. There is one exception: the
last activity of the agent should be a home activity, which
has no ending time. The ending time in the plan of an agent
may differ from the ending times in the activity profile: an
agent may try to deviate from his preferred time if this gives
him an improvement in utility. The planned ending time is
exactly what allows the agent to do this. When we start gen-
erating plans for our agent population, we will initially stick
with the preferred ending times from the activity profiles as
the planned ending times. For the group of customers for
which we have derived a pattern, we can generate a home →
work → home activity plan. For the group of customers for
which we only have a tour, we only have a set of locations.
For the activity profiles, we can easily derive a starting and
ending time, using the check-out and check-in time at each
intermediate station. The flexibility is a problem, however.
For the time being, we decide to select a global value for the
δb and δe of tour-based agents. We take a similar approach
with the trip-based customers, where we generate a single
agent for each trip. For each journey we observe from u to
v, we generate an agent with a home→ dummy→ home pat-
tern, where the first home activity should be performed at
location u and the dummy and last home activity should be
performed at location v. This gives us the following efficient
algorithm for demand generation:

Algorithm: Generation of Demand.

Input A day d and a set of customers C with for each c ∈ C
their respective set of journeys Jc

Output An agent population for day d

Step 1 P := {p : p ∈ C, Jc contains a journey during day d}

Step 2 Ppat := {p : p ∈ P, Jp has a pattern }

Step 3 Ptour := {p : p ∈ P\Ppat, Jp makes a tour at day d}

Step 4 Ptrip := P \ (Ppat ∪ Ptour)

Step 5 Initialize agent set A := ∅

Step 6 for each p ∈ Ppat

Step 6a Generate an agent with a “home → work →
home” plan

Step 6b Add the agent to A

Step 7 for each p ∈ Ptour

Step 7a Generate an agent with a plan containing the
tour locations and ending times of p’s tour at day
d

Step 7b Add the agent to A

Step 8 for each p ∈ Ptrip, for each (u, v) journey traveled
by p on d

Step 8a Generate an agent with a “home (at u) →
dummy (at v) → home (at v)” plan of which the
dummy activity should start at the check-out time
of the journey

Step 8b Add the agent to A

Step 9 return A

The running time of this algorithm is proportional to the
size of the Jc sets. Let us define n =

∑
c∈C |Jc|. If we

define k = |C| as the number of customers and m as the
maximum number of journeys for a single customer, we can
easily see that n ≤ mk. Steps 1-3 are regular filtering steps,
that can be performed by examining each set Jc or by ap-
plying the earlier algorithm and can therefore all run in
O(mk logm) = O(n logm) time. The loops in steps 6-8 each
iterate at most over k customers and generating the plan for
each customer can be done in O(m) time. Therefore, steps
6-8 run in O(mk) = O(n) time as well. Therefore, the whole
algorithm runs in O(n logm) time.

5. SIMULATION

5.1 MATSim
For our agent-based simulation, we used the MATSim

0.3.0 software package. To run a MATSim based simulation,
we need three ingredients: the agent population, a network
describing how vehicles can travel between nodes and a pub-
lic transportation schedule. When we start the simulation,
all agents calculate an initial plan. The main loop consists of
a simulation and a replanning phase. During the replanning
phase, each agent can adapt his activity plan. They do so
by using certain modules available in MATSim, called mu-
tators. During the simulation phase, all plans are executed
and all events related to movements and activities of agents
and vehicles are generated. The mutators used by the agents
to adapt their plans, can be given individual probabilities.
An example of such mutators are the rerouting mutator,
that recalculates the fastest route between activities based
on the network congestion of the previous day. Another ex-
ample is the time mutator, that shifts the planned starting
and ending times of the activities randomly, while retaining
their sequential order.

Recently, the mobility simulation of MATSim has been ex-
tended with support for public transport [18]. This mobility
simulation is an extension of the road-traffic simulation. In
MATSim, model public transport vehicles as cars with a
driver and a lot of space for additional passengers moving
over a network that is given as input.

To generate the required network, we used a list of stations
with their geographical locations and the available schedule
information for all three modalities. We add the stations
as nodes in the network. If there was a vehicle that visited
two stations consequently in the schedule, we added a link
between the two stations, with the distance of the link based
on Euclidean distance between the two stops. We enforce
the vehicles to wait at each stop until their scheduled time of
departure. The mobility simulation itself is a discrete event
simulation through a queuing network generated from the
input network.

MATSim allows us to transfer money from or to an agent,
but this mechanism is not triggered automatically. We added
a module that imposes fares on the agents. It keeps track



θ pattern tour trip
80 26% 32% 42%
120 14% 40% 46%
160 4% 48% 48%
200 1% 50% 49%
∞ 0% 50% 50%

Table 1: Population distributions for different θ values

of the moments agents enter and exit the vehicles and the
distances traveled by the vehicles. The fare of a journey
consists of a base tariff that is the same for all journeys
and a distance tariff with a certain fixed amount per meter
traveled. An additional aspect is the transfer time: if the
check-out time and check-in time of two consecutive jour-
neys is small enough, the agent doesn’t have to pay the base
tariff a second time. At the end of the simulation of a sin-
gle day, the accumulated fares are billed to the agent and
transformed into disutilities during the evaluation of the ex-
ecuted plan. The utility function itself is described in [11].
The main idea is that traveling gives a disutility, while per-
forming an activity gives utility. We did not yet implement
an extension of this scoring function that assigns a personal
price sensitivity to each agent, so this is currently a common
parameter for all agents. We used 6 and −6 as the (global)
coefficients for the performing and traveling utilities and−18
as the coefficient for late arrival.

5.2 Experimental Setup
We ran our experiments on a desktop PC with a quad-

core Intel Core 2 Quad Q6600 processor and 8 GB of RAM
running Windows 7 Professional SP1, 64-bit. Since we want
our passengers to have their working station in at least half
of their journeys and we want their home station to be at
least as frequent as their working station, we chose t0 = 0.6
and t1 = 0.5. Prior to our experiments, we generated popu-
lations for different values of θ. We examined a few possible
values, of which the distributions are presented in Table 1.
Since θ = 80, θ = 120 and θ = ∞ give us the greatest vari-
ations, we chose these for our experiments. For the tour-
based and trip-based demand, we wanted our agents to keep
as close as possible to their observed travel time, so we fixed
δb and δb for their activity patterns to 5 minutes. This gives
us a total of three different agent populations.

For our pricing strategy, we took figures inspired by the
real world pricing policies. We set the base tariff to 0.75
and the distance based tariff to 0.115. The allowed trans-
fer time is set to 30 minutes. For our experimentation with
revenue management policies, we ran each of our popula-
tions through the network two times: once with a single
tariff over the full day and once with a discount of 1% out-
side the peak hours (the peak hours are between 7:00–9:00
and 16:00–19:00). We chose 1% because our agents will al-
ways try to optimize their utility, even if the increase is very
small. The check-in time determines whether the discount
is given. To allow agents to shift their times, we enabled
MATSim’s time mutator module. Running each population
against both pricing policies, we get a total of six experi-
ments.

After some preliminary experiments, we saw that the in-
crease of agent-utilities slowed down significantly between
the 60th and 100th iteration. To be sure our simulation

reached a state that is close to an equilibrium, we ran each
simulation up until the 180th iteration.

6. RESULTS
Generating our agent population could be done very effi-

ciently from our sorted dataset of journeys that we derived
in Section 3. The average time required to process this full
set of 27 million journeys and write the agent population
to MATSim input files was on average 107 seconds. Our
simulation could roughly execute a complete iteration of the
mobility simulation in a little less than two minutes. Some
additional time was needed for finding all the shortest routes
through the transit network and dumping all the plans of the
agents after each 10th iteration. A complete run of a single
scenario took roughly five hours. The vehicle loadings ob-
served after the first iteration were in all of our six scenarios
relatively similar to Figure 2e. But at the 180th iteration,
we saw notable differences.

Let us first consider the case where we have a homoge-
neous pricing strategy over the whole day. When we move
from θ = 80 (Figure 2a) to θ = 120 (Figure 2c), we see that
the peak during the morning peak becomes a bit smaller,
while the evening peak becomes a plateau that is a bit wider.
This implies that, as soon as we treat some passengers who
where pattern based in the θ = 80 case as tour or trip-based
during the θ = 120 case, they tend to move away from the
morning peak, but towards the evening peak. When we in-
crease θ to ∞ (Figure 2e), we see that the morning peak in-
creases a bit and the evening peak increases a lot. This sug-
gests that some of the pattern-based agents in the θ = 120
case actually traveled during the morning peak in the θ =∞
case, where they were less flexible.

One thing that should be noted is the high peak close to
the end of the day in both Figure 2a and Figure 2b. This is
a clipping artifact and implies that a certain group of agents
prefers to travel at the end of the day and suggests there is a
problem with the calibration of these agents. Although the
problem decreases when we increase θ, the problem does
not disappear entirely, even when we have θ = ∞. We
ignore this problem for the time being, but it suggests that
we should be careful in drawing conclusions based on these
results, and it is an issue that should be addressed in the
future.

Now let us consider the scenarios where we discounted the
off-peak hours. The most obvious result is the fact that this
generates new peaks outside the peak-hour windows that
are even higher than the rush hour peaks. This implies that
even with a relatively small 1% discount, most of the agents
have an incentive to divert from their initial plans. There
can be two reasons for this behavior: either the agent is
flexible enough to divert without losing utility, or the disu-
tility of being early or late is smaller than the utility gained
from the discount. We can study the result of decreasing the
flexibility by comparing the results for θ = 80 (Figure 2b)
with the results for θ = 120 (Figure 2d). A noticeable differ-
ence can be observed in the patterns that emerge within the
peak-hour time windows. The evening peak in Figure 2d
has a triangular structure, compared to the θ = 80 case.
When we increase θ to ∞, we get this triangular pattern
in the morning peak as well and the effect is even stronger
in the evening peak. Since all agents will travel by public
transport and many agents diverted to the off-peak hours,
the discount resulted in a drop in revenue.



(a) θ = 80, plain tariff (b) θ = 80, off-peak discount

(c) θ = 120, plain tariff (d) θ = 120, off-peak discount

(e) θ =∞, plain tariff (f) θ =∞, off-peak discount

Figure 2: Vehicle loadings after 180 iterations for different sample size thresholds θ. On the horizontal axis, the time of day
is displayed. On the vertical axis, the number of people currently travelling is displayed.



7. DISCUSSION
Our results show that our proposed method of generat-

ing an agent population from a smart card dataset and
performing a microscopic simulation where each customer
is presented by an agent is achievable within a reasonable
amount of time. Generating the agent population and per-
forming a single run of the simulation (given that all routes
are calculated) both take under two minutes of time.

The results themselves show that the agents in our popu-
lation react heavily to our discounted pricing policy, even if
we have very inflexible agents in the θ =∞ case. However,
we see that a certain number of agents still prefers to travel
within the more expensive time window and in case of the
θ = 120 and θ =∞ cases, we see a triangular peak emerging
within the peak hours. This suggests there is a population
of agents for which the utility of arriving late is worse than
the fare reduction. This should typically hold for agents who
have to make a short distance trip, because for these agents
the fare reduction is relatively low, compared to agents who
have to travel a longer distance. This holds for real life
passengers as well: a reduction on a small fare is of course
much smaller than a reduction on a large fare. However, we
can argue that the response of the agents is still too radical.
We think the simulation will benefit greatly from calibration
and utility functions that are not entirely linear with regard
to the fare (especially when comparing prices, humans tend
to disregard small price differences to some extent). Adding
individual price sensitivities to our population of agents will
be another way to improve in this regard.

When we compare the differences between our populations
for different values of θ, we see that all populations maintain
the property that during the typical peak hours demand is
greatest. The value of θ seems to have the biggest impact on
the evening peak. For lower values of θ, this part of the de-
mand spreads outs to a much larger extent than the morning
peak. This corresponds to the observation that usually the
evening peak is longer in time and not as sharp as the morn-
ing peak. This is something which we can observe to some
extent in Figure 1a as well. The main issue with the lower
values of θ seems to be that we get greater clipping artifacts
around 5:00 and 24:00. We hope this can be addressed by
calibrating the utility functions, or by limiting the flexibil-
ity of agents when we come across individuals with extreme
cases.

In the remainder of this section, we will discuss different
topics for future research. In Section 7.1 we discuss how to
improve the demand generation itself. We discuss the possi-
bilities with regard to calibration of the parameters used by
the simulation in Section 7.2. Section 7.3 addresses the ques-
tion how we can incorporate additional datasets in order to
distinguish different types of activities. Finally, Section 7.4
addresses the issue of validation.

7.1 Demand Generation
First of all, we must consider our demand generation algo-

rithm. In our algorithm we make a couple of assumptions.
The assumption that people who commute travel a lot, is
very fundamental and probably realistic. The assumption
that commuters have a fixed home and fixed working loca-
tion probably often holds, but may be relaxed a bit: it can
be broken by people who have more than one place to spend
the night, or who have a job that has different locations that
get visited in regular patterns. With enough observations,

it may be possible to detect such patterns as well. The as-
sumption that people spend more time at home probably
holds often as well, but we must be careful with regard to
outliers: it may be possible that somebody switches mode
while at work (either by taking a bike or a car). In such an
event, it would be possible that our approach reveals that
somebody stayed for days at his working station, while this
was not true in reality. The assumption that the variation in
travel behavior of a passenger reflects his flexibility with re-
gard to travel time is the most doubtful. Studies with more
information regarding this assumption would be extremely
valuable in improving our demand generation process.

While we have shown that our approach can efficiently
generate an agent population from a real life smart card
dataset, the fact that we have taken an approach that is
very efficient and straightforward to implement has the dis-
advantage of being relatively crude. One may argue that we
can introduce sophisticated pattern recognition and data-
mining techniques in this process, in order to generate an
agent population that is closer to reality. One area for fu-
ture improvement is that we use the average starting time
and ending time of working activities, but ignore their pos-
sible correlations. In Figure 3 we can examine the scatter
plot of the durations, starting and ending times of working
activities performed by pattern-based individuals within the
four months of our dataset. While a more thorough analysis
is necessary, it seems probable that some correlations can be
exploited. Improving our method in this regard is a priority,
since we believe that this is useful information to make the
behavior of the agent population more realistic.

7.2 Calibration
In order to reflect real life behavior more closely, calibra-

tion of our simulation is a required to use it in a decision
support setting. The single global price elasticity for all
agents is something that should be implemented on an in-
dividual level. We can do this in two ways. We can change
the program to specify a utility function of each individual
agent. Alternatively, we can adapt our fare-module to mimic
price sensitivity. We can use a personal transformation func-
tion for each agent that scales the fares down for insensitive
agents and scales the fares up for sensitive agents. Another
kind of sensitivity that is valuable to model, is the sensitiv-
ity to the crowdedness of vehicles. If vehicles become too
crowded, additional delay can induce delays in the public
transportation system. This aspect was mostly ignored in
our current simulation.

The right values for the price elasticities will be very dif-
ficult to estimate from only check-ins and check-outs. The
main problem in this regard is the fact that we do not know
what possible alternatives were available and have been con-
sidered by the passenger, before he made his journey. In the
field of discrete choice modeling, this kind of data is referred
to as revealed choice data. In situations where surveys are
conducted and the subjects are exposed to multiple alter-
natives from which they must select a single option, we get
stated choice data. Within the field of discrete choice mod-
eling, most of the research effort has been performed on
analyzing stated choice data. This allows us to accurately
and efficiently estimate properties such as price elasticities
within a population. In our case, it would be necessary
to combine information obtained from stated choice exper-
iments to calibrate the simulation obtained from revealed



(a) Starting time vs ending time (b) Starting time vs duration (c) End time vs duration

Figure 3: Correlations of starting times, ending times and duration (θ = 120)

choice data. Some literature on how to combine revealed
and stated choice data has been published during the 1990’s
([6] and [3] are two examples). However, [17] reveals that
there is little research in this area concerning smart card
data.

7.3 Extensions based on additional datasets
One possible way to move our pattern based demand closer

to real activity based demand models is by combining the
smart card dataset with other datasets. A promising ap-
proach might be to look at regional information of stations.
We could use such datasets to construct profiles of stations,
which would allow us to make better guesses with regard to
the activities that can be performed around the stations. If
a station is close to a large industrial plant or office build-
ings, it is very probable that passengers traveling there do
so because they have to work. A station close to a shop-
ping mall will not only attract the employees of the shops,
but customers as well. Local stations that coincide with a
railway station or an airport are likely to attract passengers
that want to travel further, or want to travel home. Sta-
tions in residential areas will likely serve as home stations,
or as stations that get visited by passengers who want to
visit friends or family. We propose to use data provided by
the OpenStreetMap project [2], since this contains tags with
information on available activities at certain locations.

After we generate profiles for all our stations with such in-
formation, we can take this information into account while
recognizing patterns. This would allow us to make better
guesses of the temporal flexibility of passengers for which
we don’t have a large enough set of journeys. Suppose we
observe a passenger who starts his day with a journey from
a residential area to an area with a lot of office buildings
and stays there for 6 hours, then travels to an area with
a shopping mall and stays there for 1 hour, after which he
travels home. Even if we never observed any other journeys
by this passenger, we can still make an educated guess about
what he was doing and thus to what extend he could have
been flexible. However, this calls for much more sophisti-
cated statistical models than the one we are currently using.
Depending on the kind of questions we want to study, it may
or may not be worth the effort to go this far.

7.4 Validation
Validating a simulation like this is not a trivial task. One

aspect that we can validate is the question whether the sim-
ulation can be used as a predictive tool for the movement
of passengers through a public transportation network. The

straightforward way to do this is by splitting the dataset at
a certain moment in time. We can then use the first part
of the dataset to generate agent populations and compare
the outcomes to what is observed in the second part of the
dataset. At first, we should choose a moment within a pe-
riod where no policy and scheduling changes have occurred.
If we can pass this test, we can raise the bar by choosing the
moments at which a policy change has occurred, such as the
introduction of a new schedule or new pricing schemes.

Another aspect that we may want to validate, is the ques-
tion whether the emerging activity patterns of the agents
represent the real-life activity patterns of the passengers rep-
resented by the agents. Validating this aspect requires much
greater effort than validating the movements of passengers.
One approach could be to use survey data containing activ-
ity logs registered in diaries and compare the diaries to the
activity plans in the simulation. There may be some privacy
issues with this approach, since it would require that we link
the smart card id’s to the participants, in order to match a
diary to an agent. A possible workaround is to generate
faux check-in/check-out data from the diaries by generating
a check-in and a check-out for the journeys documented in
the diaries. We could then use this dataset as if it were a
smart card dataset and investigate to what extend the gen-
erated activity patterns of the agents reproduce the original
activity plans.

In a similar way, we can consider the study of other lo-
cation tracking datasets, such as triangulation logs from
mobile phone operators or the location logs from the mo-
bile phones themselves. The main advantage is that such a
dataset contains more details on the whereabouts of individ-
uals, which gives more opportunity to estimate what they
are doing. For example, using smart card data we may ob-
serve that a person checks out at a station near a shopping
mall and checks in four hours later. However, we have no
data to decide whether it is probable that this person has
been shopping or that this person has been working as an
employee at one of the stores. If we have a mobile phone log,
we may observe that the person has visited a great number
of stores during these four hours. This would be evidence
that he was not working as an employee.

8. CONCLUSIONS
We have shown how we can use smart card data to gen-

erate different types of demand. We developed an agent-
based simulation that allows us to analyze the movements
of the agents through our multimodal public transportation
network. We experimented with different settings for the



number of trip-based agents and with a 1% discount in the
off-peak hours. Finally, we discussed several opportunities
for future research.

As soon as we sorted our dataset in such a way that we
could process all journeys customer by customer in chrono-
logical order, demand generation could be done very effi-
ciently. We used simple rules to determine whether a cus-
tomer should be modeled using trip based, tour based or
pattern based demand. We have evaluated the impact of
different thresholds for the pattern based customers on the
resulting approximate equilibrium. We have also seen that
an off-peak discount can be used to let a part of the agent
population shift their travel times. In our case, this lead to a
lower revenue. However, the effect on the required capacity
must be taken into account when making a tradeoff between
costs and revenue.

There are many opportunities for future research. First,
our simulation can greatly benefit from proper calibration.
Additionally, our method for demand generation can be im-
proved upon, both by taking a closer look at the smart card
data itself using more advanced techniques and by combin-
ing the smart card data with additional datasets. Including
heterogeneity in the price sensitivity of the agents would be
another improvement over the current situation. Finally,
the simulation should be validated. We believe that an im-
proved version of our simulation can be helpful in both the
design of revenue management systems, including location
based and modality based tariff schemes and other fields of
study within a public transport context.
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[15] C. Morency, M. Trépanier, and B. Agard. Measuring
transit use variability with smart-card data. Transport
Policy, 14(3):193–203, 2007.

[16] K. Müller and K. Axhausen. Population synthesis for
microsimulation: State of the art. ETH Zürich,
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