
Coevolution and Transfer Learning in a Heterogeneous,
Point-to-Point Fleet Coordination Problem

Logan Yliniemi
Oregon State University

Corvallis, OR, USA
logan.yliniemi@engr.orst.edu

Kagan Tumer
Oregon State University

Corvallis, OR, USA
kagan.tumer@oregonstate.edu

ABSTRACT
In this work we present a multiagent Fleet Coordination
Problem (FCP). In this formulation, agents seek to mini-
mize the fuel consumed to complete all deliveries while main-
taining acceptable on-time delivery performance. Individual
vehicles must both (i) bid on the rights to deliver a load of
goods from origin to destination in a distributed, cooperative
auction and (ii) choose the rate of travel between customer
locations. We create two populations of adaptive agents,
each to address one of these necessary functions. By train-
ing each agent population separate source domains, we use
transfer learning to boost initial performance in the target
FCP. This boost removes the need for 300 generations of
agent training in the target FCP, though the source prob-
lem computation time was less than the computation time
for 5 generations in the FCP.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Management, Performance, Reliability

Keywords
Multiagent Learning, Transfer Learning, Coevolution, Lo-
gistics

1. INTRODUCTION
The use of semi tractor-trailers to move large amounts of

goods from one place to another is the backbone of the econ-
omy in developed nations. In the United States, over 70%
of all transportation of commercial goods was conducted by
truck, dwarfing all other forms of freight transportation [2].
Trucking companies face the complex problem of routing
their vehicles in such a way that they complete their con-
tracted deliveries on-time, while spending minimal fuel and
other resources. Fuel efficiency of individual vehicles has
steadily increased in recent years, due to a high amount
of research attention to aerodynamics and fuel efficient de-
signs [8, 10, 27]. This, however, only addresses one side
of the problem. If a company poorly assigns these delivery
tasks to vehicles in its fleet, a large amount of fuel can wasted
by vehicles traveling “empty miles”—miles traveled where a
vehicle has no cargo [12]. Previous work on this subject
centers around the Vehicle Routing Problem (VRP).

The VRP addresses the need to minimize the resources
consumed in a road-vehicle-based logistics environment [6].
The original VRP creates a static customer set with a set
of demands for a single good that must be satisfied by a
single depot to the customer set. Each customer typically
has a set window of time within which they will accept de-
liveries. Solutions to the VRP typically seek to minimize
the number of vehicles necessary to complete the delivery
set [6]. Algorithms that solve the classic VRP typically
fall into one of three categories: route construction, local
search, or metaheuristics [9]. Each of these solution types
are typically nonadaptive and centralized, and require full
observability of the system. The solutions also have very
little generalizability, and solving a new problem instance
will take as long as solving the first, even if the two are very
similar [9].

We address this problem by framing the domain as a
distributed multiagent system with adaptive agents. This
puts our solution strategy in the category of metaheuristics,
which are typically noted for being slow to calculate. How-
ever, we leverage the benefits of transfer learning, in which
experience from one problem instance can be used to boost
performance in another problem instance. By doing this,
less adaptation is needed between problem instances, and
acceptable performance can be attained in a new problem
instance in significantly less time than solving the new sys-
tem from scratch.

The classic VRP has been extended multiple times to in-
clude more realistic demands. One example includes soft
time windows to the classic formulation, where a delivery
may be made outside of the desired time, with a penalty
assessed proportional to the time the delivery is outside of
the desired window [9, 14]. Other extensions allow for the
inclusion of multiple depots from which deliveries may origi-
nate [23, 15], backhauls that must be made in which the cus-
tomers have goods to deliver to the depot [13], simultaneous
pickups and deliveries for back hauls [7, 17], heterogeneous
vehicles [25], and time-varying travel speed [28]. Each of
these extensions incorporates an additional level of realism
into the problem, but each also leaves out the contributions
of the other problem formulations.

In collaboration with an industry partner, we identified
key extensions to the VRP that best embody the day-to-day
operation of a truckload or less-than-truckload carrier [16].
These extensions include (i) a fixed fleet size, (ii) soft time
windows, (iii) heterogeneous vehicles, and (iv) multiple de-
pots, which we expand such that each customer acts as a
depot, creating a point-to-point delivery problem. We in-

clude all of these extensions in the domain considered in
this work. We also include a novel extension of the VRP:
(v) an elective, nonlinear tradeoff between travel time and
fuel expenditures.

The tradeoff between travel time and travel cost serves to
model that in many cases, there are multiple routes from
one location to another that trade between time efficiency
and fuel efficiency: very often a more fuel efficient route
may be available, and simply take more time to traverse.
The inclusion of these extensions to the Vehicle Routing
Problem creates a problem domain that brings a different
focus to the coordination required for a logistically-viable
solution. Instead of a centralized controller that develops a
set of routes, each agent must coordinate with the others
such that the system performs well as a whole.

The crux of the problem then becomes controlling the
vehicles in such a way that the fleet is well coordinated, to
reduce “empty miles” and other wasteful fuel consumption.
As such, we term our formulation of the VRP the Fleet
Coordination Problem, or FCP.

While algorithms exist to address each of these extensions
(i–v) individually, none have been created that incorporate
them all. In this work we propose an adaptive, distributed
control technique for assigning the responsibility for a given
delivery event through a multiagent auction to minimize fuel
consumption. By addressing the problem in this manner we
can take advantage of transfer learning to allow experience
gained in one problem instance to generalize to other “tar-
get” problem instances. This also allows us to train the
agents initially on simple “source” problems to boost their
adaptivity or performance in the target problem.

The major contributions of this work are to:

• Provide a distributed, adaptive solution strategy to a
complex Fleet Coordination Problem

• Show that transfer learning allows agents trained in a
simple source problem to significantly reduce required
training time in the FCP

• Show that agents continue to learn through coevolu-
tion in the FCP

• Demonstrate robustness to calculation approximations
and partial transfer learning

The remainder of this paper is organized as follows: Sec-
tion 2 addresses background involving the VRP, transfer
learning, evolutionary algorithms, and coevolution. Section
3 provides a complete description of the novel Fleet Coordi-
nation Problem addresssed in this work. Section 4 provides a
treatment of the experimental methods and algorithms used
in this work, including a full description of the source prob-
lems used. Section 5 contains the experimental results of
this work, which show significant gains through using trans-
fer learning in the FCP, even in the presence of calculation
approximations or information loss. Section 6 draws con-
clusions from this work and addresses future research direc-
tions.

2. BACKGROUND
In Section 2.1, we define the Vehicle Routing Problem

and describe a number of previously studied extensions to
the VRP, as well as solution strategies that have been used

to address these problems. In Section 2.2 we provide the
relevant background on transfer learning and its previous
use in various domains. Section 2.3 provides background on
coevolution.

2.1 Vehicle Routing Problem
A classic version of the VRP is formalized as:

Definition : VRP The classic Vehicle Routing Prob-
lem (VRP) consists of a depot D and a set of nV
homogeneous vehicles V = {v1, v2, ..., vnV } with a
common maximum load Qmax and maximum route
length Lmax. These vehicles must service a set of nC
customers C = {c1, c2, ..., cnC} with demand qi ∈ N
for a good provided by depot D. Each customer must
be serviced by exactly one vehicle, and each vehicle
must return to the depot at the end of its route. The
goal is to minimize the number of vehicles nV re-
quired to service all customer demand [6, 23].

Early approaches to the VRP included three primary meth-
ods. Direct solution approaches were only viable for small
problems, while heuristic methods and methods based on
the Traveling Salesman Problem were able to handle larger
problem instances [6]. Since the development of these early
solution strategies, work in the VRP has both focused on in-
corporating realistic extensions to the VRP as well as finding
new solution strategies.

Two simple extensions include the Vehicle Routing Prob-
lem with Hard Time Windows and Vehicle Routing Prob-
lem with Soft Time Windows. These extensions add time
bounds within which each customer may be serviced. In the
case of hard time windows, no early or late deliveries are al-
lowed. In the case of soft time windows, these deliveries are
allowed, but are penalized proportionally to the deviation
from the prescribed time window [9]. These variations in-
crease the problem complexity significantly, and are readily
incorporated into other VRP variations. Most VRP imple-
mentations use hard time windows as an implied constraint
unless explicitly stated otherwise.

Two other extensions to the VRP include the Vehicle
Routing Problem with Backhauling (VRPB) which provides
each customer with a supply si ∈ N that must be hauled
back to its originating depot, and the Vehicle Routing Prob-
lem with Simultaneous Pickups and Deliveries, which is a
form of the VRPB in which the dropoff of the demanded
goods and the pickup of the supplied goods must occur si-
multaneously (in order to minimize loading effort on the part
of the customer) [13, 7]. These extensions are typically not
incorporated into other variations on the VRP.

Another variant of the VRP is the use of heterogeneous,
fixed-size fleets [25]. In this formulation, a fixed number of
multiple types of vehicles is available to deliver goods to cus-
tomers. Each different vehicle type has a unique maximum
capacity and cost per unit distance traveled.

One final notable extension is the Vehicle Routing Prob-
lem with Multiple Depots, which changes the single depot
D into a set of depots D = {d1, d2, ..., dnD}. One notable
treatment of this problem was carried out by Léauté et. al,
who framed the problem as a Distributed Constrained Opti-
mization Problem (DCOP) using various modern techniques
to solve the DCOP such as SynchBB, DPOP, and P-DPOP
before solving the resulting VRPs with a locally centralized
controller [15].

In this work, we incorporate many of these into a single
problem domain. The FCP, described in section 3, uses soft
time windows, a heterogeneous fixed fleet, and as many de-
pots as customers (creating a point-to-point delivery prob-
lem) as well as incorporating an extension not found in the
literature: an elective tradeoff between travel speed and
travel cost.

The solution strategies for various versions of the VRP
have a number of shortcomings. Many of the solutions are
not generalizable from one problem type to another (though
some special circumstances do exist where solutions from
one problem type can be generalized to another, e.g. solu-
tions to the VRP with Soft Time Windows can be used for
the VRP with Hard Time Windows if the penalty for early
or late service is high enough), or even one problem instance
to another of the same type [9]. Additionally, many of the
algorithms are centralized, and require full system observ-
ability for calculations.

Decentralized solution strategies have been used to ad-
dress some variations of the VRP [23, 15, 3]. Of these,
however, some solve the problem using decentralized coordi-
nation, while others merely divide the problem into smaller
VRPs and solve each of these with a centralized controller [15].

2.2 Transfer Learning
None of the solution approaches used for the various em-

bodiments of the VRP would be suitable for the FCP with-
out significant adjustment, or would only work on a spe-
cialized subset of problem instances within those allowed
by the FCP. However, an adaptive, multiagent approach—
wherein an agent senses information about its environment,
reasons based on that information, and takes some action
— bears a number of advantages for the FCP. First, fram-
ing the problem in a multiagent setting allows for an effec-
tively decentralized approach with minimal communication
between agents. Second, using adaptive agents can allow the
use of transfer learning (TL) to leverage experience gained
in one problem instance to increase performance in another
problem instance [5].

At its simplest, transfer learning can allow an agent that
takes actions based only on local state information to use
the same policy in a different instance of an identically-
formulated problems [26]. However, transfer learning can
also be leveraged to use a simple training domain, or“source”
to boost performance in a more complex problem domain,
or “target”, as long as the policies can be represented in a
similar manner in both cases, and the experience gained in
the source problem is valuable in the target problem.

That is, an agent trained on source problems similar to
the target problem will gain benefits in performance or train-
ability in the target domain, but agents trained on a random
task will not gain any performance benefits, and may in fact
be hurt by the transfer [5, 18].

In this work we use a function approximator for each
agent, in the form of a single-layer, feed-forward neural net-
work. Such neural networks are powerful computational
tools that can serve as function approximators and have
been used in transfer learning in previous work [5, 21]. These
neural networks have been used in applications as complex
and diverse as computer vision, HIV therapy screening, and
coronary artery disease diagnosis [1, 4, 22].

Success in transfer learning is typically a function of the
similarity between the source problem and target problem,

training time on the source problem, and validity of the
agent’s representation in both the source and target prob-
lems [11, 18]. In the ideal case, the agents representation fits
both problems very well, and knowledge is well represented
for transfer. This occurs when the states seen and actions
taken are similar in both cases.

In this work we use transfer learning by producing single
agent domains that act as a microcosm of the FCP, in which
agents face similar, but not identical decisions. By training
on these domains, described in Section 4 before directly us-
ing the developed policies into the FCP, we gain benefits
both in initial performance and learning speed.

2.3 Evolution and Coevolution
To allow the agents to adapt to their environment, in

hopes of increasing the performance of the system as a whole,
we need a way to affect the policies with which the agents
reason about which actions to take in whatever state they
sense. In this work, we achieve this through the use of both
evolutionary algorithms, and coevolution.

Evolutionary algorithms are a biologically-inspired com-
putational technique in which a population of agent policies
is first randomly generated, and then tested in some do-
main. After calculating a scalar measurement of an agent’s
“fitness” for each agent, those with lower fitness are replaced
with slightly-altered copies of their higher-fitness counter-
parts. Through this random alteration and intelligent selec-
tion, system performance increases as the agents adapt to
the domain to maximize their fitness calculation.

Coevolutionary algorithms leverage the concept of evolu-
tion for team-based domains. In coevolution, multiple sep-
arate populations are maintained, and are used in a shared
simulation environment, where their fitness is evaluated based
on how well they perform an assigned task as a member of a
team made up of members from each population. An evolu-
tionary algorithm is carried out on each population individ-
ually, such that the populations eventually produce agent
policies that are well-suited in the team-based environment,
to maximize the team’s calculated fitness.

Coevolutionary algorithms have the potential to speed up
a search through a complex space (which readily character-
izes the FCP), but can often lead to a suboptimal area of the
search space [19, 21]. This can be due to the agents learning
to take a conservative strategy, being able to cooperate with
a broader range of teammates [19, 20]. However, in this work
we use an evolutionary algorithm on each agent population
before using transfer learning and incorporating coevolution
in the FCP (Section 4.2 – 4.3), so we have already guided
the populations into favorable areas of the search space.

3. FLEET COORDINATION PROBLEM
The Fleet Coordination Problem is a variant on the clas-

sic VRP that includes the following extensions: (i) soft time
windows, (ii) customer locations acting both as depots and
delivery locations, (iii) a heterogeneous fleet of vehicles, (iv)
a fixed fleet size, and (v) an agent-determined tradeoff be-
tween time efficiency and fuel efficiency (which can be intu-
itively thought of as the vehicle choosing a “speed” without
much conceptual loss).

The FCP can be formally defined as:

Definition : FCP The Fleet Coordination Prob-
lem (FCP) consists of an allotted time T = {t|0 ≤

t ≤ Tend}, a set of customers C = {c1, c2, ..., cnC}
in the 3-dimensional Euclidian space, a set of nP
packages P = {p1, p2, ..., pnP }, each consisting of a
set of: a weight 0 ≤ wi ≤ Wmax, a customer origin
for the package caj ∈ C located at λaj , a customer

to deliver the package to, cbj ∈ C, located at λbj ,
the beginning and end times within which the de-
livery must be completed, taj , t

b
j ∈ T . Each package

pj = {wj , caj , cbj , taj , tbj}, must be delivered point-to-
point by one of a set of nV nonhomogeneous vehi-
cles V = {v1, v2, ..., vnV } which are each described
by fuel efficiency, weight, and allowed cargo weight
vi = {ηi, wi, κi}. Each vehicle vi travels along each
of the nK “journey legs” described by edges connect-
ing each customer directly to each other at a unitless
rate of travel Rk ∈ [0, 100] The goal is to maximize
the system level utility G, measured as a combination
of the negative total fuel consumed by all members
of the fleet and their on-time performance (Equa-
tion 10).

There are a few key points to note in this formulation.
First, it is possible to travel from any customer ca to any
other customer cb directly. This is an abstraction of a road
system, which would realistically pass through a customer
cc if that customer was sufficiently close to the straight-line
path. Each trip from a customer ca to cb consists of nK = 10
“journey legs” (“legs” for short), regardless of the length of
these legs. Agents may decide on the tradeoff between fuel
efficiency and time efficiency for each leg independently, but
the decision holds for the entire leg. This assumption was
made so that calculations would scale relative to the number
of packages to be delivered in a system, rather than the
distance travelled by the vehicles in an experimental run.

Also, the customers are not assumed to be on the Euclid-
ian plane, and in fact exist in a three-dimensional environ-
ment. The slope between any two customer locations is lim-
ited to be less than a 6% grade. This adds the complexity of
uphill and downhill travel into the decision-making required
by each agent and the fuel efficiency calculation [24].

The fuel cost for traveling from customer ca to customer
cb is characterized as a sum over all of the k legs of the
journey:

Ftot =

nK∑
k=1

Felec,k + Freq,k (1)

where

Freq,k = ηiα1δk(1 + wi sin(Sk)) (2)

Felec,k = ηiα2δkR
2
j,k + ηiα3δkRj,k (3)

where α1−3 are experimental coefficients that are held con-
stant through experimental runs, ηi are vehicle-specific fuel-
efficiency parameters, δk is the distance of leg k, wj is the
weight of truck j, Sk is the slope of leg k, and Rj,k is the
“rate-of-travel” of truck j over leg k [24]. This Rj,k value
can be loosely interpreted as a speed of travel but is more
accurately described as both a function of speed and fuel
efficiency of a vehicle’s chosen route.

Intuitively, these fuel expenditure equations break down
to this: Equation 2 calculates the minimum cost of travel
between two points, which is a function of the distance be-
tween the two points, and the slope of the road between

Algorithm 1 FCP Execution Algorithm

for j = 1→ total packages do
λa ← Package origin location
λb ← Package destination
for i = 1→ total vehicles do

if vehicle i is “busy” then
Bidding agent i bids βi,j = 0

else
Bidding agent i bids a value βi,j ∈ [0, 1]

end if
end for
Find highest bidder : vwin = argmax

i
(βi,j)

Move vwin to origin: Algorithm 2 (λvi , λa)
Increase weight of vwin by package weight wj
Move vwin to destination: Algorithm 2 (λa, λb)
Decrease weight of vwin by package weight wj
Determine if package j was delivered within desired de-
livery window (Equation 6)

end for

them. Equation 3 models that the vehicles may choose to
move along more or less fuel efficient paths (modeled by the
linear term) at a more or less fuel efficient speed (modeled
by the quadratic term) [24].

The reason for the forms of these equations follows: for
any journey, there is a physical absolute minimum fuel that
has to be spent to complete the journey. This amount of
fuel for journey k is Freq. Beyond that, due to the choice in
driving habits of the driver, and route choices by a navigator,
more fuel can be spent to get to a destination faster. This
is represented by Felec.

This fuel consumption model is not intended to compete
with to the state of the art. This model was chosen to limit
computation time, while still lending a degree of realism to
the problem domain [16].

Paired with this, the rate-of-travel decisions Rj,k also af-
fect the time of travel between the origin and destination:

Ttot =

nK∑
k=1

δk
Rj,k

(4)

where Ttot is the total time it takes for the vehicle to travel
from the two locations, λa and λb.

It is also specifically important to note that all package
deliveries must be completed; they may not be refused, and
they stay in the domain until the completion of a delivery
(some methods for internet routing allow for an amount of
packet loss and design this into the approach; this is not
viable for this problem domain).

Though we strove for applicability, This representation of
the FCP is still a rough representation of reality, and cannot
incorporate all facets of the real-world problem.

4. METHODS AND ALGORITHMS
We take a vehicle centric approach, wherein agents are

associated with the vehicles; other agent-based distributed
approaches are possible, with depots or packages themselves
treated as agents, but in the FCP, choosing a vehicle-centric
approach makes intuitive sense.

Because the target problem domain (the FCP, described
in Section 3) is so complex, we break the agent responsi-

bilities into two categories: (i) the movement of the agent
from one location of another, and (ii) the decision of which
agent will be responsible for each package. We explain these
decisions in detail in Section 4.1. These two responsibilities
are trained on different source tasks, which are laid out in
Sections 4.2 and 4.3.

4.1 Distributed Auction and Agent Populations
First, an agent must decide how much the immediate im-

portance the vehicle will give to speed and fuel efficiency, re-
spectively, in order that the vehicle might be mobile across
the domain. This “driver” decision must be made during
each leg of each journey from a customer ca to cb, and this
directly impacts both the fuel spent on that leg, and the
time spent traversing that leg (Equations 1-4).

The other agent responsibility is choosing which package
pickup and delivery events each vehicle will be responsi-
ble for. To solve this portion of the problem, we use a
distributed, one-shot auction in which the highest bidder
takes responsibility for traveling to the customer at which
the package originates, picking up the package, and deliver-
ing it to its final destination. The agents each bid a value
βi ∈ [0, 1] that represents how well-suited they believe their
vehicle is for handling that package.

These two tasks, though they deal with similar informa-
tion — an agent must consider the distance away from a
package origin both in choosing a speed and in choosing a
bidding value — are very different decisions. To address this,
we took the split responsibilities and assigned them to two
completely separate agent groups. That is, instead of one
agent being assigned to each vehicle, a team of two agents,
consisting of one “driving” agent and one “bidding” agent, is
assigned to the vehicle, to work as a team. We characterize
each of these agents as a 4-input, 10-hidden unit, 1-output
feed-forward neural network.

The actions of each of these agents affects the performance
of their teammate as well as the system-level performance
G, in turn. Because the actions taken by the two agents
are very different, however, we choose to initially train them
in different source environments, to leverage the maximum
possible benefit from transfer learning. These two source
problems are described in the following sections.

4.2 Evolution in Driver Source Domain
To train the driving agents, we pose the simplest possible

problem, such that the driver learns the effect of its actions
on the outcomes as quickly as possible. The source problem
that we train the driver on is characterized as follows:

Definition : Driver Source Domain (DSD) A

Algorithm 2 Travel Algorithm

Given origin and destination locations (λa, λb)
Determine the length of each journey leg, δk
for k = 1→ journey legs do

Select rate of travel R(i,k)

Calculate required and elective fuel spent (Equations 2
and 3)
Calculate total fuel spent Ftot (Equation 1)
Calculate time spent Ttot (Equation 4)
Mark vehicle as “busy” for the time spent.

end for

Algorithm 3 Evolutionary Process

Initialize 100 population members of neural networks with
small weights.
for g = 1→ end generation do

Simulation Step (varies with domain)
DSD: Simulate DSD ∀ agents i (Section 4.2)
or
BSE: Calculate βi ∀ agents i (Equation 7, Section 4.3)
or
FCP: Choose nV agents at random, perform FCP (Al-
gorithm 1); Repeat until all agents have participated
once.

Fitness Step
Calculate fitness of all agents: Ui,g ∀ i (Equa-

tions 5, 8, 9 or 10)
Sort agents from highest to lowest fitness

Selection Step (select 20 survivors)
set counter = 20
set survivei = 0 ∀ i

for z = 1→ 20 do
(select high-fitness survivors)
With probability (1− ε),
counter ← counter − 1
and set survivei = 1

end for
for z = 1→ counter do

(select random survivors)
Select a random agent j with survivej == 0
Set survivej = 1

end for

Mutation Step (repopulate to 100 agents)
for Z = 1→ total agents do

if surviveZ == 0 then
Select a parent network Y where surviveY == 1
Set all weights of Z ← weights of Y
Mutate all weights using triangular distribution of
mean 0, maximum and minimum change ±0.05

end if
end for

end for

vehicle v is placed at the location of customer ca, and
assigned a package pj of weight wj . It must travel to
the location of customer cb (Algorithm 2), with the
goals of minimizing total fuel consumed during the
journey Ftot (Equation 1), and arriving before a time
Tf ∈ T .

With only two locations, one package, and one vehicle,
this embodies an extremely simple training case. The single
agent makes only ten decisions (the rate of travel for each
leg of the journey) before receiving feedback, allowing for the
feedback to be very specific to the individual agent and much
easier to learn compared to the target multiagent, long-term
environment.

Specifically, the agent is a single-layer, feed-forward neural
network that takes as inputs the distance to the destination

δ(i,b), the slope of the next leg of the journey Sk, a mea-
sure of “time pressure” ψj , and the vehicle weight wv ; and
gives as outputs Rj,k, the “rate-of-travel” of the vehicle it is
controlling along the kth leg of the journey. ψj takes on a
value of 1 if the vehicle can make it to its destination at a
(unit-less) rate of travel of 751, a higher value if the vehicle is
under more time pressure for the delivery (a faster speed is
necessary), and a lower value if a lower speed would still re-
sult in an on-time delivery. This was done to give the agents
a sense of time that scaled correctly with the problem. It
is roughly equivalent to the human intuition of “being on
time”, while still en route to a destination.

The driving agents face exactly these same decisions within
the FCP. Though the system-level effects of their decisions
are not fully expressed within this domain, the simple prin-
ciples that it is generally better to be on time than late, and
better to be efficient about fuel expenditures are expressed
within this domain. The specifics of the training algorithm
follow.

The agents are trained through an evolutionary algorithm,
in which a population of 100 agents is allowed to perform
on the same instance of the DSD before downselection and
mutation occurs (Algorithm 3). After each agent has per-
formed once on a given problem instance (over the course of
one generation), the problem instance changes; this allows
the agent population to experience a wide variety of train-
ing situations to learn robust behaviors. In each generation,
each agent is assigned a fitness for generation g based on fuel
spent and whether they arrived before the prescribed time
limit:

Uj,g = −Ftot −H(g)L(j) (5)

where the fitness of agent j in generation g is Uj,g, the fuel
consumed on the journey is Ftot, H(g) is the positive “hand-
icap” assessed for arriving late and is a function of the gen-
eration, and L(j) is calculated as:

L(j) = max(0, Tarrive − Tf) (6)

which returns zero if package j was on time, or the measure
of time the package was late.

In Equation 5, the handicap H(g) is initially zero, such
that the agent has an opportunity to learn the function be-
tween its actions and the fuel efficiency of the vehicle over
the journey. H(g) then steadily increases as g increases, so
that arriving on time becomes a higher and higher priority.
As g nears the final generation gN , the fuel efficiency term
and on-time term achieve a rough parity in terms of impor-
tance. Changes in the size of the experimental domain would
necessitate an adjustment of the H(g) function to maintain
this parity.

The agents learn to achieve high performance on this task
through an evolutionary algorithm, which mimics the pro-
cess of biological evolution; high-achieving agents are very
likely to survive, and lower-achieving agents are very likely
to be replaced. In this implementation, we maintain a pop-
ulation of 100 agents, and allow 20 agents to pass directly
to the next generation. The best-performing member of the
population is always maintained, and 19 additional agents
are selected; for each of the 20 agents with the best fit-
ness values, the agent is selected to survive with probability

175 was chosen as a “typical” rate of travel for this calcula-
tion, merely so that vehicles could ”make up time” if neces-
sary, at quadratic fuel cost. See Equation 3 for details.

(1−ε), and a random agent is selected to survive with proba-
bility ε = 0.3. The value of ε was chosen to encourage slower
population convergence to avoid local optima.

The 20 surviving agents serve as parents for the 80 agents
created for the next generation. Each new agent selects a
parent agent from among the survivors, and after a step
of mutation using a triangular distribution on each weight
centered at zero, with maximum and minimum deviations
of ±0.05 in the neural network is, is entered into the pop-
ulation. This evolutionary algorithm process is outlined in
Algorithm 3.

4.3 Evolution in Bidder Source Domain
In a similar manner, we must form a simple source domain

to train the bidding agents. In our first iteration of this, we
created a source similar to the driver source domain, which
instead placed multiple vehicles near a pickup location and
allowed the bidding agents to create bids for each vehicle.
This led to unacceptable performance: for any given deliv-
ery, bidding agents learned to bid relatively higher for better
suited vehicles, but they did not learn to create an appro-
priate absolute bidding gradient. In fact, the agents trained
on this BSD only utilize about 1% of the available bidding
space, that is, βmax − βmin ≤ 0.01. This bidding strategy
did not generalize well into the FCP.

Instead of this approach, we applied domain knowledge to
create a supervised learning problem. Distance, time, vehi-
cle weight and road conditions between the vehicle’s current
location and the pickup location all have an impact on a
vehicle’s suitability for a delivery. We can combine these
in a linear fashion to create a target bid equation to train
the population of agents. We call this equation the Bidder
Source Equation, detailed below:

Definition : Bidder Source Equation (BSE)
We train agent i’s bid for vehicle v (initially located
at location λi) on package pj using the equation:

βtrain = 1− k1δ(i,a) − k2S(i,a) − k3ψj − k4wv (7)

where βtrain is the bid, δ(i,a) is the distance from
the vehicle’s current location to the package origin,
S(i,a) is the average road slope between the vehicle’s
location and the package origin, ψj is a metric that
characterizes the time available to make the delivery
(see Section 4.2), and wv is the weight of the vehi-
cle. k1−4 are tunable parameters. Performance is not
sensitive to these parameters, except that k1 must be
significantly larger than the rest.

With this equation as the source problem, we can create
a random training instance and train directly on the error,
in a case of supervised learning. That is, the fitness Ui of
an agent i is:

Ui = −|βi − βtrain| (8)

We allow each agent to evaluate the circumstances provided
by the problem instance into a bid, and then use the same
evolutionary algorithm outlined in Section 4.2 in Algorithm 3.
By using the BSE, we attained bidder behaviors that used a
much larger portion of the available bidding space (βmax −
βmin ≈ 0.9). This bidding range was much more appropriate
to transfer into the FCP.

The justification for the form of Equation 7 is as follows.
Each term in the linear combination expresses a simple fact:

for example the first term states that a vehicle closer is more
suited for a delivery than one further away; the last states
that a lighter vehicle is more suited than one that is heavier.
The linear combination of these factors is the simplest possi-
ble form that expresses these facts. By allowing our bidders
to train on this equation, we improve their performance over
a random neural network. This equation does not seek to
represent an ideal bidding formulation for the FCP, it merely
acts as a starting point, from which the agents may deviate
as the evolutionary process continues.

4.4 Coevolution in Target Domain
The agent populations, trained first in their source do-

mains (the DSD and BSE), are then put into use in the
target domain, the FCP. We choose to keep the two popula-
tions of agents separated, calculating their fitness with the
same metric in each experiment, but allowing them to be
evolved separately. By allowing this, and by randomly pair-
ing the agents together in each problem instance together,
we employ the concept of coevolution.

In the experiments conducted for this work, a set of 10
trucks is assigned to service 25 customers for a series of
1000 package delivery events. For each generation, we draw
10 agents from each population that have not yet been used
in the current generation, pair them randomly, and assign
the teams of agents associated with vehicle i fitness values
based either on their local utility Li, or the global system
utility G. We calculate Li as the negative sum of all fuel
spent by that vehicle, plus a positive term for each package
delivered on-time.

Li =

nP∑
j=1

Ii(j)[−F(tot,j) −HL(j) + φ] (9)

where nP is the total number of packages in the problem
instance, Ii(j) is a function that indicates whether vehicle i
was the maximum bid for package j, F(tot,j) is the total fuel
expended delivering package j, H is the constant handicap
coefficient for a late delivery, L(j) is calculated by Equa-
tion 6, and φ is a constant “bonus” for making a delivery.

Because fuel costs are always a negative value, without the
positive bonus for delivering a package, the agents quickly
learn to bid low so that another agent might have to make
the delivery, making the first agent earn zero fitness for that
delivery event, while the other incurs the negative cost. This
increases the fitness of the first agent at a cost to the system
level performance. Conversely, if φ is set too high, all agents
bid very high for every delivery, because the fuel costs in-
curred are dwarfed by the bonus received for completing the
delivery.

We calculate the global system utility G as the sum of all
local rewards, without the bonuses (φ):

G =

nV∑
i=1

[Li]− (nP)φ (10)

At the system level we are concerned with the sum to-
tal of fuel spent; the package delivery bonuses merely add a
constant to the global reward, which does not affect learn-
ing. Because all of the agents are scored on the overall fuel
consumption, they learn not shy from taking a package that
they are well-suited to deliver, making the bonus term un-
necessary. The on-time delivery term remains, because this
is a matter of concern to a truckload-hauling carrier: having

a high on-time-percentage can be a selling point in attaining
new contracts, and by changing the H term in Equation 9,
we can potentially cause the agents to make many hard-
time deliveries (high H) or many soft-time deliveries (H low).
This G term will always evaluate to be negative; the agents
strive to maximize the system utility, thus minimizing the
fuel spent to make a delivery on time.

4.5 Approximation and Partial Transfer
In order to show that our approach to solving the FCP is

not brittle to changes in experimental parameters or small
changes in procedure, we choose to demonstrate results on
two additional forms of complication. First, we pose a situ-
ation in which none of the drivers are trained in any source
problem, while bidders are trained in the BSE. In the target
problem, coevolution is allowed to proceed as normal.

Additionally, to demonstrate that a variety of function ap-
proximators could be suitable for this solution strategy, we
replace the sigmoid function in the neural network we used
with a gross approximation which requires far less compu-
tational power: a 3-piece linear function:

f(x) =

 0 : x < −2
0.25x+ 0.5 : −2 ≤ x ≤ 2
1 : x > 2

(11)

The training of the network and weights remained the
same, but for the entire training process from source to tar-
get, the piecewise linear function was used instead of the sig-
moid. Note that though this function is not differentiable,
we do not use a gradient-based approach in this work; evolu-
tion still functions using this approximation by mutating the
weights associated with the networks and evaluating fitness.

5. RESULTS AND DISCUSSION
In this work, we used all 8 methods (detailed below) on a

series of 30 randomly-generated instances of the FCP, with
a fleet of 10 vehicles serving 25 customer locations, over a
course of 1000 package deliveries. In training the bidders,
we used values of {k1, k2, k3, k4} = {0.6, 0.1, 0.1, 0.2}. We
created a timescale long enough that the package conges-
tion would be low, keeping the problem instance difficulty
on the low end of those available through the FCP, and al-
lowing all deliveries to be completed while limiting vehicles
to carrying out one delivery at a time. We chose to use dif-
ferent problem instances for our statistical trials to show the
robustness in our methods and results. For each statistical
run, the same problem instance was used for all methods
test, and reported global system utility G was normalized
with respect to the mean of the first generation of all trials,
except full transfer learning. This was done to allow com-
parison across statistical trials, and to emphasize that the
global system utility G is a unitless quantity that represents
a combination of the fleet’s fuel consumption and on-time
performance (Equation 10). Error is reported as the stan-
dard deviation of the mean,2 and in many cases is smaller
than the symbols used to plot. To validate our distributed
approach to the novel FCP presented in Section 3, we de-
sired to compare the effect of using a local fitness evaluation
(Ui = Li) and a global fitness calculation (Ui = G) for

2The deviation of the mean for N statistical runs is calcu-
lated as σ√

N

coevolution in the FCP, and testing these baseline measure-
ments against the use of full transfer learning, using both
DSD and BSE source environments. Additionally, we wish
to demonstrate that our approach is not brittle to lost infor-
mation or approximations, and compare these results to the
baseline cases, creating a set of eight experimental methods.
We show results in the following scenarios:

1. No transfer learning with fitness calculated through
local and global utilities (Section 5.2)

2. Full transfer learning with global and local fitness dur-
ing coevolution (Section 5.2)

3. Partial transfer learning (Section 5.3)

4. Transfer learning using a linear approximation of a sig-
moid (Section 5.4)

5.1 Learning From Scratch
First, as a validation of our approach and methodology

for the FCP, we compared the results of training the agents
in the target FCP from scratch, with no transfer learning,
against the use of full transfer learning from both source
problems, as outlined in Section 4. Figure 1 shows these
results, which show a substantial gain in system performance
over the training period, regardless of whether the local or
global training signal was used. This is because of the strong
coupling between the two calculations, as the global utility
G is formulated as a sum of local rewards Li, with a constant
term subtracted (Equation 10).

5.2 Full Transfer Learning
We note that the full transfer learning case shown in Fig-

ure 2 thoroughly outperforms learning from scratch, with
initial performance that is within 10% of the best converged
performance of any algorithm tested. It is important to note
here that the computation time for the full transfer learn-
ing case is roughly the same as 5 additional generations of
training time in the FCP (as the source problems are much
simpler). Full transfer learning, using both the DSD and
BSE source domains to train the driver and bidder agents,

0 50 100 150 200 250 300

−1

−0.9

−0.8

−0.7

−0.6

Generations

Global: N
o T

ra
nsfe

r

Local: N
o T

ra
nsfe

r

G
lo
b
a
l
S
y
s
te
m
 U
ti
li
ty

Figure 1: Comparison of agents evolved in the FCP
using as their fitness evaluation: G, the global sys-
tem utility (upper, dotted line); Li (lower, solid
line). Note that in 300 generations, both fitness
calculations lead to improvement in system perfor-
mance.

0 50 100 150 200 250 300

−1

−0.9

−0.8

−0.7

−0.6

Generations

G
lo
b
a
l
S
y
s
te
m
 U
ti
li
ty Local: Full Transfer

Local:
No T

ra
nsfe

r

Global: Full Transfer

Global: N
o T

ra
nsfe

r

Figure 2: Performance in the FCP of agents coe-
volved solely in the FCP (lower lines with square
markers) against agents evolved in separate source
domains transferred into the FCP (upper lines with
triangle markers). Note that the two full-transfer
learning cases overlap significantly, and the boost in
performance persists over 300 generations. Approx-
imate computing time for the source problems in the
full transfer cases was approximately 5 generations
on this scale.

is extremely effective in the FCP, and results of comparable
quality can be obtained in only 10% of the training time
required, when compared to learning from scratch. All of
these results hold true whether the local utility Li or global
utility G is used for the fitness evaluation calculation, as the
resulting performance is nearly identical.

5.3 Partial Transfer Learning
We also show that our methodology in this work is robust

to potential failures. First, we pose a scenario in which we
allow the bidders to be trained on their source problem, but
force the driving agents to learn from scratch in the FCP
target environment: only one of the two agent populations
benefits from transfer learning.

As seen in Figure 3 we still see some benefits both in ini-
tial performance (∼10%) and in learning speed in both the
local and global reward cases. Because of the simpler map-
ping from actions taken to fitness calculation (the bidders
are taking reasonable actions, instead of random ones as
they would when learning from scratch), noise is effectively
removed from the fitness calculation and the rate of perfor-
mance increase is improved. The driving agents are able to
learn to take reasonable actions before the bidding agents
diverge from making good decisions because of the reward
signals received in the FCP. It is important to note that in
all of these cases, the driving agents and bidding agents are
always receiving the same reward.

When we perform the same experiment in reverse, allow-
ing the driving agents to use transfer learning, while forcing
the bidding agents to start learning from scratch, we see per-
formance that is almost at the level of full transfer learning:
in the tested instances of the FCP, the drivers are capable
of wasting far more fuel than poorly assigned bids. This
is because the worst effect a poor bid can have is a vehicle
traversing across the experimental domain, while in this for-
mulation a driver is allowed to choose an excessive speed that
wastes significantly more fuel. These results were omitted
from Figure 3 for readability. In higher package-congestion

0 50 100 150 200 250 300

−1

−0.9

−0.8

−0.7

−0.6

Generations

G
lo
b
a
l
S
y
s
te
m
 U
ti
li
ty Local: Full Transfer

Global: Full Transfer

L
o
c
a
l:
 B

id
d
e
r
T
ra

n
s
fe

r

G
lo

bal:
B
id

der
T
ra

nsf
er

G
lo

bal:
N

o T
ra

nsfe
r

Loca
l:

N
o T

ra
nsf

er

Figure 3: Experimental results in the FCP using
three forms of transfer learning: no transfer (bot-
tom, blue and red), full transfer (top, triangles),
and bidder-only transfer learning (middle, green and
black) which could correspond to an information loss
scenario. Note that the full transfer learning cases
overlap each other.

0 50 100 150 200 250 300

−1

−0.9

−0.8

−0.7

−0.6

Generations

G
lo
b
a
l
S
y
s
te
m
 U
ti
li
ty

G
lo

ba
l:

Li
ne

ar

G
lo

bal:
Sig

m
oid

Local: L
inear

Lo
ca

l:
S
ig

m
oi

d

Figure 4: Experimental results in the FCP using
bidder transfer learning and coevolving on the global
system utility G or local agent utility Li. Because
of the relatively simple problem instance, a neural
network using a linear function as an approximation
of the sigmoid itself actually outperformed the full-
accuracy neural network.

cases or cases in which the system designer limits the speed
at which the vehicles may travel to a greater degree, we
expect that the bidding agents would have a stronger con-
tribution to overall system performance.

5.4 Transfer Learning with Linear Approxi-
mations

Finally, we examine whether the neural network function
approximation (which, with its many embedded sigmoids,
can be very computationally expensive) is strictly necessary
for our methods to work in the FCP domain. We replace the
sigmoid function in each of these calculations with a 3-piece
linear function with the same slope as the sigmoid at zero,
seen in Equation 11.

In Figure 4, we show that using the linear approximation
of the sigmoid in the FCP with bidder transfer learning actu-
ally leads to better system performance than using the neu-
ral network itself, converging to similar performance more

than 100 generations faster. Here, it is important to note
that the neural network using sigmoids itself is a function
approximator, and the linear piecewise functions simplify
this approximation.

Because the particular problem instance of the VRP shown
is low-congestion enough, the linear function is able to em-
body all necessary information for treatment of this prob-
lem. In more congested problem instances, we expect that
this would not be the case, and that the neural network using
sigmoids would begin to outperform the linear approxima-
tion at some level of problem complexity or congestion.

6. CONCLUSION
In conclusion, in this work we have proposed the novel

combination of VRP variations into the Fleet Coordina-
tion Problem domain. We proposed an adaptive solution
strategy that leverages benefits from the fields of multiagent
systems for decentralization, neural networks for function
approximation, neuro-evolution for agent training, transfer
learning for boosting initial performance and maintaining
policy applicability over problem instances, and coevolution
for simplifying the agent responsibilities and maintaining the
ability for agents to retain their skills in addressing these dif-
ferent responsibilities in the FCP.

Though we trained on two simple source domains before
placing agents in the FCP target domain, even after coevolv-
ing the agents on the combined FCP, we can still transfer
this experience through a policy transfer, by maintaining
the agents’ policies and only changing the problem instance.
Our experimental methods suggest that we can very eas-
ily take agent populations trained in one FCP and transfer
their knowledge to an FCP of similar complexity with suc-
cess, and work in the near future includes transferring agent
experience from a simple FCP to a more complex, congested
FCP instance. The FCP parameters for vehicles, packages,
time, and customers in this work were chosen such that a
suitable solution could definitely be found; problem diffi-
culty can be increased by decreasing available resources to
work with, or increasing demand. We expect that this “stair
step” method of training agents may provide better perfor-
mance in complex FCP instances than transferring straight
from the original source problem to the final target prob-
lem, or learning from scratch. We seek to discover if there
is a problem instance that cannot be successfully learned
from scratch, which is achievable through the use of transfer
learning.

Additionally, we wish to frame the FCP as a multi-objective
problem, and incorporate multi-objective metrics into our
treatment of the problem, including fitness shaping tech-
niques to assist the agents in discerning their particular con-
tribution to the system as a whole.

7. REFERENCES
[1] Amr Ahmed, Kai Yu, Wei Xu, Yihong Gong, and Eric

Xing. Training hierarchical feed-forward visual
recognition models using transfer learning from
pseudo-tasks. ECCV, pages 69–82, 2008.

[2] Felix Ammah-Tagoe. Freight in america: 2006.
Technical report, U.S. Department of Transportation,
Washington D.C., January 2006.

[3] K. Savla Arsie, A. and E. Frazzoli. Efficient routing
algorithms for multiple vehicles with no explicit

communications. IEEE Transactions on Automatic
Control, 10(54):2302– 231, 2009.

[4] Steffen Bickel, Jasmina Bogojeska, Thomas Lengauer,
and Tobias Scheffer. Multi-task learning for hiv
therapy screening. ICML, pages 56–63, 2008.

[5] Rich Caruana. Multitask Learning. PhD thesis,
Carnegie Mellon University, September 1997.

[6] Nicos Christofides. The vehicle routing problem.
Revue Francaise d’Automatique, d’Informatique et de
Recherche Operationelle, 10(2):55–70, February 1976.

[7] J Dethloff. Relation between vehicle routing problems:
an insertion heuristic for the vehicle routing problem
with simultaneous delivery and pick-up applied to the
vehicle routing problem with backhauls. Journal of the
Operational Research Society, 53:115–118, 2002.

[8] Richard Henry Distel and Richard Albert Distel.
Apparatus to improve the aerodynamics, fuel
economy, docking and handling of heavy trucks.
Patent US 7,748,771 B2, Distel Tool and Machine
Company, 2010.

[9] Miguel Andres Figliozzi. An iterative route
construction and improvement algorithm for the
vehicle routing problem with soft time windows.
Transportation Research Part C: Emerging
Technologies, 18(5):668–679, October 2010.

[10] Dario Guariento. System for completely closing the
space between the cab and semi-trailer of an industrial
or commercial vehicle, to improve the aerodynamics of
the vehicle. Patent EP 1 870 320 A2, IVECO, 2007.

[11] Steven Michael Gutstein. Transfer Learning
Techniques for Deep Neural Nets. PhD thesis,
University of Texas at El Paso, May 2010.

[12] J Hine, A Barton, C Guojing, and W Wenlong. The
scope for improving the efficiency of road freight
transport in china. In 7th World Conference on
Transport Research, 1995.

[13] Charlotte Jacobs-Blecha and Marc Goetschalckx. The
vehicle routing problem with backhauls: Properties
and solution algorithms. Materials Handling Research
Centre Technical Report MHRC-TR-88-13, Georgia
Institute of Technology, Atlanta, 1993.

[14] Gilbert Laporte. The vehicle routing problem: An
overview of exact and approximate algorithms.
European Journal of Operational Research, 1992.

[15] Thomas Léauté, Brammert Ottens, and Boi Faltings.
Ensuring Privacy through Distributed Computation in
Multiple-Depot Vehicle Routing Problems. In
Proceedings of the ECAI’10 Workshop on Artificial
Intelligence and Logistics (AILog’10), 2010.

[16] Daimler Trucks NA. Personal communication.

[17] Gábor Nagy and Said Salhi. Heuristic algorithms for
single and multiple depot vehicle routing problems
with pickups and deliveries. European Journal of
Operational Research, 162:126–141, 2005.

[18] Sinno Jialin Pan and Qiang Yang. A survey on transfer
learning. IEEE Transactions on Knowledge and Data
Engineering, 22(10):1345–1359, October 2010.

[19] Liviu Panait. Theoretical convergence guarantees for
cooperative coevolutionary algorithms. Evolutionary
Computation, 18(4):581–615, 2010.

[20] Liviu Panait and Sean Luke. Cooperative multi-agent

learning: The state of the art. Journal of Autonomous
Agents and Multi-Agent Systems, 11:387–434, 2005.

[21] Padmini Rajagopalan, Aditya Rawal, and Risto
Miikkulainen. Emergence of competitive and
cooperative behavior using coevolution. GECCO,
pages 1073–1074, 2010.

[22] Daniel L. Silver and Robert E. Mercer. Sequential
inductive transfer for coronary artery disease
diagnosis. International Joint Conference on Neural
Networks, 2007.

[23] Andrei Soeanu, Sujoy Ray, Mourad Debbabi, Jean
Berger, Abdeslem Boukhtouta, and Ahmed Ghanmi.
A decentralized heuristic for multi-depot split-delivery
vehicle routing problem. IEEE International
Conference on Automation and Logistics, 2011.

[24] Gwang-Geong Soung. Method and device for
measuring slope of driving road. Patent 5,703,776,
Hyundai Motor Company, Ltd., 1995.

[25] C.D. Tarantilis, C.T. Kiranoudis, and V.S. Vassiliadis.
A threshold accepting metaheuristic for the
heterogeneous fixed fleet vehicle routing problem.
European Journal of Operational Research,
152:148–158, 2004.

[26] Sebastian Thrun. Is learning the n-th thing any easier
than learning the first? Advances in Neural
Information Processing Systems, pages 640–646, 1996.

[27] William Burley Uland. Under-vehicle aerodynamic
efficiency improvement device. Patent Application
Publication US 2005/0146161 A1, 2005.

[28] Yang-ByungPark and Sung-HunSong. Vehicle
scheduling problems with time-varying speed.
Computers in Industrial Engineering, 33(3-4):853–856,
1997.

