
Comparing context-aware routing and local intersection
management

Adriaan W. ter Mors Delft University of Technology
Mekelweg 4, Delft, The Netherlands

a.w.termors@tudelft.nl

ABSTRACT
In multi-agent routing, there is a set of mobile agents each
with a start location and destination location on a shared
infrastructure. An agent wants to reach his destination as
quickly as possible, but conflicts with other agents must be
avoided. We have previously developed a single-agent route
planning algorithm that can find a shortest-time route that
does not conflict with any previously made route plans.

In this paper, we want to compare this route planning ap-
proach with non-planning approaches, in which intersec-
tion agents determine which agent may enter an intersec-
tion next, and where the agent will subsequently go (given
its destination). When making these decisions, the intersec-
tion agents use only locally observed traffic information.

Our experiments show that context-aware routing produces
more efficient results in case no incidents disrupt the exe-
cution. However, in the face of unexpected incidents, the
performance of the intersection management policies proves
very robust, while context-aware routing only produces good
results when coupled with effective plan repair mechanisms.

Categories and Subject Descriptors
I.2.11 [Computing methodologies]: Multiagent systems

General Terms
Algorithms, Experimentation

Keywords
route planning, traffic agents, simulation

1. INTRODUCTION
In this paper we will discuss the problem of multi-agent route
planning, in which there are multiple mobile agents each
with a start and destination location on a roadmap. The
roadmap consists of intersections and lanes connecting the

intersections, and each agent wants to find a route that will
bring it to its destination as quickly as possible.

In previous work [20], we developed a prioritized route plan-
ning approach in which agents are first assigned a priority
(typically randomly, or based on their arrival time), and sub-
sequently plan a route that is optimal for themselves and
does not create any deadlock with any of the higher-priority
agents. We named our algorithm context-aware routing, as
each planning agent is aware of its context, which is the set
of reservations from route plans of higher-priority agents.
Deadlock prevention is especially relevant in roadmaps with
bi-directional roads that can be traversed in only one direc-
tion at the same time (e.g., when the roads are not wide
enough for two vehicles to travel side by side), for instance
in application domains of automated guided vehicles [9] or
airport taxi routing [6].

In this paper, however, we will focus on infrastructures in
which all roads are directed, such as common in urban traf-
fic control (cf. [1]), and investigate how different routing
approaches influence congestion, and therefore the times
the agents reach their destinations. We will compare our
conflict-free routing approach with a number of local inter-
section management policies that we will define in section 4.
These intersection management policies make routing deci-
sions for the vehicles only on the basis of information that
is local to the intersection, namely how many vehicles are
waiting to enter the intersection, and how long they have
been waiting.

1.1 Related work
The problem of finding an optimal set of conflict-free route
plans is NP-hard [17], and all approaches that guarantee
an optimal solution1 that we know of only manage to find
solutions for a handful of agents. In domains with larger
numbers of agents, a common approach is to let the agents
plan for themselves, usually one after the other, or by it-
eratively communicating about conflicting plans (cf. [14]).
Silver [15], for example, presents an approach that is based
on the straightforward idea of letting an agent perform an
A* search, in which it checks whether the nodes it visits
during search are not occupied by other agents at the time
the agent would reach those nodes.

1Even for optimal approaches, there are often simplifying
assumptions, for example dividing time up into 15-second
intervals [3].

A problem with a straightforward A*-with-time approach is
that it is unclear how many times a particular node must
be visited during the search. The shortest-time path that
finds the node unoccupied might not be extendible to the
destination node in case all of the node’s neighbours are
occupied at the time (see also the example in section 3).
We must therefore introduce the notion of a free time win-
dow, which is an interval during which the node is unoccu-
pied. During search, we need only consider the shortest-time
paths to each of the free time windows of a node, and then
the single-agent routing problem can be solved optimally in
polynomial time. Kim and Tanchoco [9] first developed and
analysed such an algorithm, with a runtime complexity of
O(|R|2|A|4), where R is the set of infrastructure resources
(lanes and intersections), and A is the set of agents. Our
context-aware route planning algorithm lowered that time
complexity to O(|R||A| log(|R||A|) + |R|2|A|).

Further reductions in computation time can be achieved in
case path and velocity planning are separated. In other
words, if an agent first determines a path from start to des-
tination, and then finds a conflict-free schedule along this
path. Hatzack and Nebel [6] presented such an approach in
an airport taxi routing scenario, whereas Lee et al. [10] con-
sider an automated-guided-vehicle setting, in which agents
first determine the k shortest paths between their respective
start and destination locations, and then find conflict-free
schedules along each of these paths, and choose the quickest.
In previous work [19], we compared these fixed-path schedul-
ing approaches with context-aware routing, and found that
the performance of the former seriously degrades if too many
agents plan to make use of the same roads; only if the k alter-
native routes constitute relevant alternatives can fixed path
scheduling outperform context-aware routing.

So far, we have not compared our context-aware routing
approach with non-planning approaches because these are
either in some way restrictive of the infrastructure or how
agents use it (e.g., in case agents are required to traverse the
infrastructure in a loop [8]), or because the mechanisms to
avoid or prevent deadlocks are time-consuming to run and
implement (for instance the Petri-net-based approach from
Fanti [5]). In this paper, we restrict ourselves to infrastruc-
tures that are less deadlock-prone, so we can compare the
efficiency (in terms of global plan quality) of context-aware
routing with other approaches.

In urban traffic control, most intersection management ap-
proaches make use of traffic lights, where the focus is on
learning efficient behaviour for individual intersections [1].
Coordination is often limited to neighbouring intersections,
although the implementation of higher-level agents to sup-
port the decision-making is also considered [2]. Another
interesting line of work is that into Automated Intersec-
tion Management from the group of Peter Stone (see for
instance [4]), in which intersections are not light-controlled,
but vehicle agents place reservations for conflict-free tra-
jectories in space and time over the intersection. Up un-
til recently, work had focussed on the operation of a single
intersection, but recent work by Hausknecht et al. [7] stud-
ies traffic phenomena when multiple intersections are linked
together. Vasirani and Ossowski [22, 23] propose a market-
based approach, in which intersection managers set prices

according to current and future demand, and driver agents
adapt their routes based on time and cost considerations.
Although inspired by Dresner and Stone’s Automated In-
tersection Management, Vasirani’s research is moving from
microscopic models, in which vehicle behaviour is affected
by the movements of immediate neighbours, to mesoscopic
models in which average traffic densities on roads deter-
mine traversal speeds. A difference between these urban
traffic control approaches and our work (and other plan-
ning approaches like it — often originating from Automated
Guided Vehicle (AGV) research) is the number of vehicles
per intersection; in AGV applications, an intersection can be
full with one vehicle (for instance in container terminal do-
mains), while for automated intersection management, the
intersections can hold many.

1.2 Contributions and organization
This paper makes two contributions to field of route plan-
ning and traffic control:

1. A comparison of the context-aware routing approach
with local intersection management policies, both in
terms of efficiency (measured in e.g. makespan and
sum of agent plan costs) and in terms of robustness,
i.e., how well the methods perform when unexpected
incidents may disrupt the (planned) execution.

2. The definition of a set of simple local intersection man-
agement policies.

In section 2, we first present our model for context-aware
routing, and then in section 3 we describe the context-aware
route planning algorithm, as well as two plan repair mech-
anisms that are required when incidents can occur during
plan execution. Section 4 presents our intersection manage-
ment policies, and in section 5 we discuss our experimental
results. Section 6 contains the conclusions and the ideas for
future work.

2. MODEL
We assume a setA of agents that each have to find a quickest-
time route from one location in the infrastructure to an-
other. We model the infrastructure as a resource graph
GR = (R,ER), where resources in R can be roads, inter-
sections, or interesting locations that the agents can visit.
Formally, an agent can directly go from resource r ∈ R to
resource r′ ∈ R if the pair (r, r′) is in the successor relation
ER ⊆ R×R. A resource r has a capacity c(r), denoting the
maximum number of agents that can simultaneously make
use of the resource, and a duration d(r) > 0 which repre-
sents the minimum time it takes for an agent to traverse the
resource.

In this paper, we will restrict ourselves to (non-toroidal)
grids, where two uni-directional lanes connect each pair of
adjacent intersections. For these infrastructures, intersec-
tion resources have unit capacity and lane resources have
capacity 8; minimum traversal times are 2 time units for the
intersections and 7 for the lanes. In previous work (e.g. [18]),
we have focused on bi-directional lanes, i.e., lanes on which
travel in both directions is possible, though not at the same

time. In such a setting, however, the local intersection man-
agement policies we will evaluate in this paper would cause
a deadlock almost instantly.

Definition 1 (Deadlock). Let Ac = {A1, . . . , Am} ⊆
A be a set of agents, and let Rc = {r1, . . . , rm} ⊆ R be a
set of resources such that, ∀i ∈ {1, . . . ,m}, agent Ai is on
resource ri, and ∀i ∈ {1, . . . ,m − 1} : (ri, ri+1) ∈ ER and
(rm, r1) ∈ ER. The agents Ac are in a deadlock if and only
if:

1. Ai’s next resource is ri+1 (∀i ∈ {1, . . . ,m − 1), or r1
if (i = m), and

2. ∀i ∈ {1, . . . ,m} the number of agents on ri equals
c(ri).

In our context-aware routing approach, deadlocks are pre-
vented by ensuring that agents never make plans that ex-
ceed the resource capacities. An agent’s plan consists of a
sequence of resources, and a corresponding sequence of in-
tervals in which to visit them.

Definition 2 (Route Plan). Given a start resource
r, a destination resource r′, and a release time t, a route
plan is a sequence π = (〈r1, τ1〉, . . . , 〈rn, τn〉), τi = [ti, t

′
i),

of n plan steps such that r1 = r, rn = r′, t1 ≥ t, and
∀j ∈ {1, . . . , n}:

meets(τj , τj+1) (j < n) (1)

|τj | ≥ d(rj) (2)

(rj , rj+1) ∈ ER (j < n) (3)

The first constraint states that the exit time of the jth re-
source in the plan must be equal to the entry time into re-
source j+1. The second constraint requires that the agent’s
occupation time of a resource is at least sufficient to tra-
verse the resource in the minimum travel time. The third
constraint states that if two resources follow each other in
the agent’s plan, then they must be adjacent in the resource
graph. The cost of an agent’s plan is defined as the difference
between the end time and the release time.

In sequential route planning, an agent must respect the plans
of all the agents that came before it. From the set of existing
agent plans, we can infer how many agents will be in each
of the resources for each point in time.

Definition 3 (Resource load). Given a set Π of agent
plans and the set of all time points T , the resource load λ is
a function λ : R× T → N that returns the number of agents
occupying a resource r at time point t ∈ T :

λ(r, t) = |{〈r, τ〉 ∈ π |π ∈ Π ∧ t ∈ τ}| (4)

In our approach the resource load represents the informa-
tion that agents need to know about the plans of the other,
higher-priority agents. This is similar to other reservation-
based approaches such as from Silver [15], but subtly differ-
ent from the approach in Nishi et al. [14], in which agents
inspect each others’ plans, in order to detect conflicts.

An agent may only make use of a resource in time intervals
when the resource load is less than the capacity of the re-
source. In such a free time window, an agent can enter a
resource without creating a conflict with any of the existing
agent plans.

Definition 4 (Free time window). Given a resource-
load function λ, a free time window on resource r is a max-
imal interval w = [t1, t2) such that:

∀t ∈ w : λ(r, t) < c(r) (5)

(t2 − t1) ≥ d(r) (6)

The above definition states that for an interval to be a free
time window, there should not only be sufficient capacity at
any moment during that interval (condition 5), but it should
also be long enough for an agent to traverse the resource
(condition 6). Within a free time window, an agent must
enter a resource, traverse it, and exit the resource. Because
of the (non-zero) minimum travel time of a resource, an
agent cannot enter a resource right at the end of a free time
window, and it cannot exit the window at the start of one.
We therefore define for every free time window w an entry
window τentry(w) and an exit window τexit(w). The sizes of
the entry and exit windows of a free time window w = [t1, t2)
on resource r are constrained by the minimum travel time
of the resource: τentry(w) = [t1, t2 − d(r)), and τexit(w) =
[t1 + d(r), t2).

An agent that wants to go from resource r to (adjacent)
resource r′ should find a free time window for both of these
resources. By definition 2 of a route plan, the exit time out
of r should be equal to the entry time into r′. Hence, for
a free time window w′ on r′ to be reachable from free time
window w on r, the entry window of w′ should overlap with
the exit window of w.

Definition 5 (Free time window graph). The free
time window graph is a directed graph GW = (W,EW),
where the vertices w ∈ W are the set of free time windows,
and EW is the set of edges specifying the reachability be-
tween free time windows. Given a free time window w on
resource r, and a free time window w′ on resource r′, it holds
that (w,w′) ∈ EW if the following two conditions hold:

(r, r′) ∈ ER (7)

τexit(w) ∩ τentry(w′) 6= ∅ (8)

2.1 Plan execution assumptions
We make the simplifying assumption that vehicles do not
require any acceleration or deceleration. That is, an agent
can reach its desired speed instantaneously (whether this is
its maximum speed or a standstill). In addition, we assume
that an agent can see whether there is another vehicle di-
rectly in front of it on the road (or on the next road, in
case the vehicle is on an intersection). This means that the
problem of avoiding collisions is taken care of in the simula-
tor, allowing us to focus on the problems of route planning
and/or intersection management for the rest of this paper.

A final simplifying assumption concerns the start and fin-
ish locations of the vehicles. We assume that vehicles only

enter the infrastructure once they are granted permission
to enter their start resource (an intersection, in our experi-
ments), and leave the infrastructure as soon as the destina-
tion resource has been traversed (also an intersection). This
assumption can be realistic in application domains such as
airport taxi routing (where planes land and take off) and
urban traffic, where vehicles enter and exit a city, but less
realistic in, e.g., warehousing domains. The routing problem
for vehicles that must occupy a location of the infrastructure
at all times is sometimes referred to as cooperative pathfind-
ing in the literature, and considerable effort must already be
spent in finding feasible routes for all the vehicles, let alone
efficient ones (cf. [16, 11]).

3. ROUTE PLANNING ALGORITHM
In classical shortest path planning, if a node v is on the
shortest path from node s to node t, then a shortest path to
v can always be expanded to a shortest path to t. Figure 1
shows that in prioritized multi-agent route planning, it is not
the case that a shortest route to an intermediate resource
can always be expanded to the destination: we see a blue
agent that wants to go to the rightmost resource, and a black
agent that has a plan to travel rightwards at least until the
middle intersection. At time 1 (indicated by the numbers
inside the vehicles), the blue agent might make a reservation
for the leftmost intersection (i.e., slotting in just ahead of
the black agent without hindering it), and expand this plan
to the middle intersection. From the middle intersection,
at time 2, it cannot plan to go right, because that road
is momentarily full with vehicles. However, the blue agent
must vacate the intersection, because the black agent has a
reservation to use it. Hence, the earliest plan to the middle
intersection can only be expanded in the upwards direction,
which is a detour in space, and possibly time depending on
how quickly the grey agents will start moving.

1

1

22

Figure 1: If the blue agent enters the intersection
before the black agent, at time 1, then at time 2 it
has to drive upwards in order to vacate the intersec-
tion for the black agent.

The idea behind our algorithm is that we only need to con-
sider shortest partial plans to the free time windows on a
resource: if we have a partial plan that arrives at resource r
at time t that lies within free time window w, then all other
partial plans to r that arrive at time t′, (t′ ≥ t) ∧ (t′ ∈ w),
can be simulated by waiting in resource r from time t to
time t′. Waiting is possible because no conflict will ensue as
long as the agent exits r before the end of w.

Our route planning algorithm performs a search through the
free time window graph that is similar to A*: In each iter-

ation, we remove a partial plan from an open list of partial
plans with a lowest value of f = g + h, where g is the ac-
tual cost of the partial plan, and h is a heuristic estimate
of reaching the destination resource. In algorithm 1 below,
we will write ρ(r, t) to denote the set of free time windows
(directly) reachable from resource r at earliest exit time t.

Algorithm 1 Plan Route

Require: start resource r1, destination resource r2, start
time t; free time window graph GW = (W,EW)

Ensure: shortest-time, conflict-free route plan from (r1, t)
to r2.

1: if ∃w [w ∈W | t ∈ τentry(w) ∧ r1 = resource(w)] then
2: mark(w, open)
3: entryTime(w)← t

4: while open 6= ∅ do
5: w ← argminw′∈open f(w′)
6: mark(w, closed)
7: r ← resource(w)
8: if r = r2 then
9: return followBackPointers(w)

10: texit ← g(w) = entryTime(w) + d(resource(w))
11: for all w′ ∈ {ρ(r, texit) \ closed} do
12: tentry ← max(texit, start(w′))
13: if tentry < entryTime(w′) then
14: backpointer(w′)← w
15: entryTime(w′)← tentry
16: mark(w′, open)

17: return null

In line 1 of algorithm 1, we check whether there exists a
free time window on the start resource r1 that contains the
start time t. If there is such a free time window w, then
in line 2 we mark this window as open, and we record the
entry time into w as the start time t. In line 5, we select the
free time window w on the open list with the lowest value of
f(w). As in the original A* algorithm, the function f(w) =
g(w) + h(w) is a combination of the actual cost g(w) of the
partial plan to w, plus a heuristic estimate h(w) to reach
the destination from w. If the resource r associated with
w equals the destination resource r2, then we have found
the shortest route to r2, for the following reason: all other
partial plans on open have a higher (or equal) f -value, and if
the heuristic is consistent2, expansion of these partial plans
will never lead to a plan with a lower f -value. We return the
optimal plan in line 9 by following a series of backpointers.

If r is not the destination, we expand the plan. First, in
line 10, we determine the earliest possible exit time out of r
as the cost of the partial plan: g(w) = entryTime(w)+d(r).
Then, in line 11, we iterate over all reachable free time win-
dows that are not closed. When expanding free time window
w to free time window w′, we determine the entry time into
w′ as the maximum of the earliest exit time out of resource
r, and the earliest entry time into w′. We only expand the

2Because we make use of a closed list, it is not sufficient
to require that the heuristic is merely admissible (i.e., that
it would never overestimate the cost of reaching the des-
tination). For a consistent heuristic, it should hold that
h(w) ≤ g(w,w′) + h(w′), where g(w,w′) is the actual cost
of getting from w to w′.

plan from w if there has been no previous expansion to free
time window w′ with an earlier entry time (initially, we as-
sume that the entry times into free time windows are set to
infinity). In line 14, we set the backpointer of the new win-
dow w′ to the window w from which it was expanded. Then,
we record the entry time into w′ as tentry, and we mark w′ as
open. Finally, in case no conflict-free plan exists, we return
null in line 17. The worst-case complexity of algorithm 1 is
O(|W | log(|W |)+ |EW |). In case no cyclic plans are allowed,
then |W | ≤ (|A|+ 1)|R|, and the complexity of algorithm 1
is O(|A||R| log(|A||R|)+ |A||R|2) (proof in [17]). The worst-
case complexity of maintaining the free time window graph
GW is O(|A||R|2): for each of at most R reservations of
the new plan, one or two new free time windows must be
connected to O(|W | = |A||R|) existing free time windows.

3.1 Plan repair mechanisms
We will now briefly discuss two plan repair mechanisms that
can be used to guarantee conflict-free execution for context-
aware planners in dynamic environments. The first has been
developed by Maza and Castagna [12] and can be considered
a baseline approach in the sense that it guarantees conflict-
free running without trying to find a repair solution that will
result in efficient plan execution. The second is an extension
of the first, in which agents can increase their priority over
other, delayed agents.

Both plan repair mechanisms rely on the fact that, after all
agents have made their plans, it is known for each resource
(lane or intersection) in which order the agents are scheduled
to visit it. The mechanism of Maza and Castagna is simply
to adhere to this resource priority (not to be confused with
the order in which the agents plan) during plan execution.
So, for example, if agent A1 in figure 2 is delayed, then agent
A2 (and all agents behind it) must wait in case A1 was the
first to enter intersection the middle intersection.

2

1

Figure 2: If the red agent A1 is delayed, then the
blue agent A2 must wait its turn to enter the inter-
section.

In later work, Maza and Castagna developed a repair mech-
anism that allowed agents to increase their resource priority
over delayed agents in such a way that no new deadlocks
were introduced [13]. Note that in our current setting, it is
not so obvious why such a change in priorities might lead
to a deadlock, but for infrastructures with bi-directional re-
sources, attempting a deadlock-free priority change often in-
volves increasing priority over multiple agents for a whole
corridor of resources. The second plan repair mechanism
we will employ in this paper is an improvement over the al-
gorithm from Maza and Castagna [13] in the sense that it
identifies more deadlock-free priority changes, and also leads
to a greater reduction in global delay; see [21].

3.2 Planning shortest paths
We will combine local intersection management policies with
agents that follow a shortest path between start and desti-

nation locations (for those cases that the intersection does
not determine the next road to be taken). In a grid infras-
tructure, there are many shortest paths (as we assume no
cost for turning), so we let each agent construct a random
shortest path.

4. INTERSECTION MANAGEMENT
In this section, we will first describe two types of intersec-
tion management policies, applied locally at each of the in-
tersections in the infrastructure. The first, most basic type
determines which agent is allowed to enter an intersection
next, out of the agents ready to enter. The second type
of policy then subsequently determines which lane an agent
will drive into when it leaves the intersection. Recall from
section 3 that a pre-determined path is followed in case only
the first type of policy is applied. We now describe the three
intersection entry policies that we have defined.

Definition 6 (FCFS). Under First-Come First-Served
the agent with the earliest entry request time may enter first
(ties broken arbitrarily); an agent may request entry once it
has reached the intersection.

One should note that an agent cannot request entry when it
is waiting behind another agent; only when the agent is first
in line can it request entry. The FCFS policy is simple and
fair, but it does not take into account congestion formation
on the infrastructure.

Definition 7 (LQF). Under Longest Queue First, the
agent that forms the head of the longest queue of vehicles
waiting to enter, is allowed to enter.

Longest Queue First (LQF) aims to reduce congestion in the
system by reducing the number of vehicles on the fullest of
the roads leading into the intersection. In addition to the
roads leading into an intersection, another source of vehicles
wanting to enter the intersection is formed by those agents
that have their starting point at this intersection. However,
this set of vehicles is only counted as a queue of length 1;
this means that the LQF policy gives precedence to vehicles
already on the infrastructure.

Definition 8 (WLQF). Let t∗ be the current time, ti
the time at which agent Ai requested entry to the intersec-
tion, and ni the number of agents on the same road as Ai

at time t∗. Under Weighted Longest Queue First, the agent
that is next to enter is selected according to the formula:

argmaxi∈{1,...,|A|} ni + f(t∗ − ti) (9)

for a given function f .

In this paper, we have chosen the function f to divide the
argument t∗−ti by the minimum travel time of the intersec-
tion. Hence, when the function f returns a value of, say, 5,
then it means that a particular agent has been waiting long
enough for (at most) five agents to traverse the intersection
since the time it requested entry.

We will now describe an intersection management policy
that directs agents to their next lane resource, which we
call the Routing Table Approach (RTA), inspired by the
way internet routers send packets along their way over the
internet. Under RTA, an intersection will select one of at
most three outgoing lanes for the next part of the route of an
agent, thus not including the direction the agent just came
from. When an agent enters an intersection, it announces
its destination to the intersection agent, which then com-
putes a value for each of the eligible lanes. Note that the
routing table approach only uses information from the lane
resources adjacent to the intersection.

Definition 9 (RTA). Let t∗ be the time at which agent
Ak, with destination z is ready to leave the intersection, and
let L = {l1, . . . , lm}, L ⊂ R, be the eligible outgoing lane
resources, and let n(li) denote the number of agents on lane
li at time t∗. Then the Routing Table Approach selects the
next lane resource according to the formula:

argmini∈{1,...,|L|} g(li, z) + α(
n(li)∑|L|
j=1 n(lj)

) (10)

for some constant α and function g that returns the value of
the shortest path between its arguments.

In our experiments, we settled on a value of 5.0 for α; by
comparison, the maximum difference, in our setting, be-
tween the road with the shortest path and the road with
the longest path was 4. This means that if only one outgo-
ing lane has vehicles on it, then this lane will not be chosen.

5. EXPERIMENTAL RESULTS
In this section, we describe a set of experiments conducted to
compare the performance of context-aware routing to local
intersection management strategies. Our principal perfor-
mance measure is the makespan3, but we also look at the
sum of agent plan costs (where the cost of one agent plan
is the time at which it reaches its destination), the distance
travelled, and the number of times an intersection manage-
ment policy will lead the agents into a deadlock.

Figure 3 presents the first batch of experiments in which we
compared performances for increasing number of agents on a
grid infrastructure of five rows and five columns. Each data
point in figure 3(a) is the average of 30 runs, or as many
as were completed deadlock-free out of those 30 problem in-
stances. The first conclusion we can draw from figure 3 is
that context-aware route planning is invariably faster than
any of the local intersection management policies. A second
conclusion is that the attempt of the routing table approach
to reduce congestion (by selecting a next road with conges-
tion in mind) pays off for two out of three intersection entry
policies; RTA combined with Weighted Longest Queue First
seems to be the fastest of the local intersection management
policies, although there is not much difference with the basic
FCFS entry policy.

3All agents have a release time of 0, which means that all
agents will either try to obtain a reservation for that time.
The makespan is then simply the time at which all agents
have reached their destination.

Figure 3(b) shows, however, that RTA-FCFS and RTA-WLQF
are not the best from a completeness point of view; from
about 350 to 400 agents, an increasing percentages of ex-
periment runs result in a deadlock situation. If only in-
tersection entry management is employed, then from about
300 agents the ability to route agents reduces drastically, in
case either First-Come First-Served, or Weighted Longest
Queue First is employed. Curiously, when the entry pol-
icy Longest Queue First is employed, intersection manage-
ment has a zero-deadlock rate. This can be explained from
figure 5, in which we see a screenshot from the execution
of the same instance by RTA-LQF and RTA-WLQF. The
main difference is that the latter method, by taking into
account the waiting time of a vehicle wanting to enter the
infrastructure, will now and then release a new vehicle into
the infrastructure even when long queues of vehicles already
on the infrastructure have formed at the intersection. The
LQF approach, by contrast, will only release a new vehi-
cle when the longest queue of vehicles waiting to enter is
at most 1. Hence, using the LQF approach the number of
vehicles simultaneously on the infrastructure will be lower,
significantly reducing the probability of a deadlock.

RTA−FCFS

200 250 300 350 400 450 500

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

number of agents

m
a
k
e
s
p
a
n
 (

s
)

Context−Aware
LQF
RTA−LQF
WLQF
RTA−WLQF
FCFS

(a) makespan

RTA−FCFS

200 250 300 350 400 450 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

number of agents

ra
ti
o
 o

f
d
e
a
d
lo

c
k
 o

c
c
u
rr

e
n
c
e
s

Context−Aware
LQF
RTA−LQF
WLQF
RTA−WLQF
FCFS

(b) deadlock ratio, with CA, LQF, and RTA-LQF at 0

Figure 3: Performance comparison on (5, 5) grid
infrastructure, measured in makespan, and the per-
centage of deadlock occurrences.

As figure 3 is too cluttered to include confidence intervals,
we have plotted the standard deviations for this batch of
experiments in figure 4. The spike in the WLQF line (with

the ‘x’ symbol) is due to the fact that it only managed a
handful of deadlock-free runs for 400 or more agents. Over-
all, we can conclude from figure 4 that context-aware rout-
ing is more predictable in its performance than the inter-
section management policies (RTA-FCFS briefly dips below
the Context-Aware line at close to 500 agents, though by
that point only around 25% of runs were deadlock free).

RTA−FCFS

200 250 300 350 400 450 500

1
0

2
0

3
0

4
0

5
0

number of agents

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

s
)

Context−Aware
LQF
RTA−LQF
WLQF
RTA−WLQF
FCFS

Figure 4: Standard deviations for the experiments
of figure 3.

5.1 Cost and distance performance measures
We will now briefly look at the the results of the experiments
from different cost perspectives, in figure 6. In figure 6(a)
we see the cost per agent divided by the minimum attain-
able cost (i.e., the cost of traversing the shortest path when
no other agents are around), averaged over all agents. This
cost measure is a good indicator of the extent agents suffer
from the presence of other vehicles, and we see it increases
linearly with the number of agents in the system, pretty
much regardless of which method is used. Figure 6 shows
relative performances that are very similar to those in fig-
ure 3 for the makespan measure, although perhaps the best
of the intersection-entry-only policies is closer to the best of
the RTA policies.

Figure 6(b) shows the distances travelled by each agent (di-
vided by the minimum distance, and averaged over all agents),
for each of the methods. For intersection management with-
out RTA, the agents always follow a fixed, and shortest path,
so the distance ratio is always 1.0. Agents using context-
aware routing have the option of taking a slightly longer
route if the shortest one is congested, and this results in
routes that are on average 5% longer than the shortest path.
The routing table approach has agents travelling the great-
est distances, directing agents away from congested areas.
If, however, there is no way around the congested area, then
it may happen that agents are kept circling in uncongested
areas of the infrastructure until the congestion clears.

Another interesting aspect of figure 6(b) is that for RTA-
FCFS and RTA-WLQF, the average distance travelled per
agent decreases as the number of agents in the system in-
creases. One explanation might be that, as the system be-
comes heavily congested, the difference between congestion
levels on lanes decreases (i.e., if all are very congested). Cer-
tainly, if all outgoing lanes are equally congested, then the

RTA approach will always select a lane with minimum dis-
tance.

5.2 Unexpected incidents
We will now investigate robustness, i.e., the ability of each
of the methods to cope with unexpected delays. We will in-
troduce vehicle incidents that render vehicles immobile for
a fixed period of time. Incidents are generated according to
a rate parameter, which specifies the average number of in-
cidents per vehicle per time unit. Vehicles can only receive
incidents when active, i.e., not before they have entered their
start location, and not after they have vacated their desti-
nation location (recall the assumption regarding agents and
their start and destination locations from section 2.1).

In figure 7, we vary the rate of incidents from 0 to 60 in-
cidents per agent, per hour4, and we try two different inci-
dent durations: 10 seconds per incident in figure 7(a), and
30 seconds for figure 7(b). All incident-experiments were
conducted with 400 agents, about the number of agents for
which RTA-WLQF is still able to produce a large percentage
of deadlock-free runs.

In previous experiments [21, 17, 18], context-aware routing
approaches were shown to be fairly robust under incidents
of this magnitude, but for these types of infrastructures,
standard context-aware quickly loses its advantage, espe-
cially for longer incidents. An explanation would be that
on this type of grid infrastructure, there is a lot of inter-
action between the agents on a relatively small number of
intersections. This means that if one agent is delayed, many
other agents have to wait for it. Increasing the priority with
the agent order swap mechanism (CA-AOS in figure 7) re-
stores much of the performance of context-aware routing,
although for incidents of longer duration it is now matched
by the best intersection management policies. What is also
interesting to note from figure 7 is that the local intersec-
tion management policies, and in particular LQF, are very
robust in the face of vehicle incidents; although figures 7(a)
and 7(b) represent different problem instances (i.e., different
pairs of start-and-destination locations), it is interesting to
see that the makespan barely increases for longer incidents
of 30 seconds. Apparently, when one lane of cars is stuck
behind a stricken vehicle, an intersection can use that to
simply process more vehicles from the remaining lanes.

6. CONCLUSIONS AND FUTURE WORK
In this paper we compared context-aware routing, in which
agents sequentially find locally optimal and conflict-free route
plans, with local intersection management, in which an in-
tersection agent decides which vehicle is the next to enter,
and possibly directs it along the next lane. Our experi-
ments show that, without any incidents disrupting plan ex-
ecution, context-aware routing produces the most efficient
route plans, when measured in makespan or agent traversal
time, while only covering on average 5% more distance than
always following the shortest path. Moreover, the most effi-
cient intersection management policies are prone to produce
deadlock situations.
4To put 60 incidents per agent per hour into perspective,
note that the total simulation time equals the makespan,
which from figure 7 can be seen to vary from around 200 to
700 seconds.

(a) RTA-LQF (b) RTA-WLQF

Figure 5: Execution screenshot of RTA-LQF(a) and RTA-WLQF(b) on the same instance, at one minute into
the run.

RTA−FCFS

200 250 300 350 400 450 500

3
4

5
6

7
8

9

number of agents

(a
g
e
n
t
c
o
s
t
/
m

in
im

u
m

 c
o
s
t)

 a
v
e
ra

g
e
d
 p

e
r

a
g
e
n
t

Context−Aware
LQF
RTA−LQF
WLQF
RTA−WLQF
FCFS

(a) cost ratio

RTA−FCFS

200 250 300 350 400 450 500

1
.0

0
1
.0

5
1
.1

0
1
.1

5
1
.2

0
1
.2

5
1
.3

0

number of agents

(a
g
e
n
t
d
is

ta
n
c
e
 /
 m

in
im

u
m

 d
is

ta
n
c
e
)

a
v
e
ra

g
e
d
 p

e
r

a
g
e
n
t

Context−Aware
LQF
RTA−LQF
WLQF
RTA−WLQF
FCFS

(b) distance ratio

Figure 6: Performance comparison on (5, 5) grid infrastructure, measured in agent cost and distance travelled,
divided by a lower bound on cost (and distance), which is the shortest path when other vehicles are not taken
into account.

RTA−WLQF

0 10 20 30 40 50 60

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

incident rate

m
a
k
e
s
p
a
n
 (

s
)

CA
CA−AOS
LQF
RTA−LQF

(a) Incident duration = 10s

RTA−WLQF

0 10 20 30 40 50 60

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

incident rate

m
a
k
e
s
p
a
n
 (

s
)

CA
CA−AOS
LQF
RTA−LQF

(b) Incident duration = 30s

Figure 7: Performance comparison on (5, 5) grid infrastructure with 400 agents and makespan performance
measure, with unexpected incidents during the execution.

If we do allow unexpected incidents to occur during plan
execution, the performance of context-aware routing (with
the standard deadlock-prevention mechanism of waiting for
delayed vehicles) degrades fairly sharply as many agents end
up waiting for one delayed agent — not only directly behind
it, but also at an intersection where the delayed agent has
failed to appear. The application of the agent order swap
mechanism, which increases the priority of timely agents
over delayed ones, can return the performance of context-
aware routing to a good level. It does mean, however, that
context-aware routing needs some kind of plan repair mech-
anisms in order to be applied in realistic settings. By con-
trast, the local intersection management policies can be used
‘as is’ (although there is still the possibility of deadlock, of
course).

For future work, there are a number of lines of research we
would like to pursue. First of all, we can look into different
repair schemes for context-aware routing. The agent order
swap mechanism employed in this paper changes the pri-
orities of the agents, but keeps each agent to its originally
planned path. Full plan repair, in which an agent computes
a completely new route, has been tried in [18] with mixed
results. On the one hand, each time an agent successfully
makes a new plan it improves its own performance with-
out hindering others (because the new reservations may not
conflict with existing ones, adjusted for delays), so full plan
repair should be able to improve performance considerably.
On the other hand, continual re-planning by all agents has
not led to significant global improvement, with agents go-
ing back and forth between plans, occasionally covering the
same ground multiple times. Hence, a cleverer way of man-
aging the re-planning process is required in order to gain
real benefits.

The intersection management policies presented in this pa-
per are of course only a first step in providing intelligent
intersection control. One interesting area of possible ex-
tensions is to allow limited communication and cooperation
between intersection management agents. We could see that
the current routing table approach in particular suffered
from the limitations of its myopic approach, with agents be-

ing directed around congested areas that they had no pos-
sibility of avoiding. In addition, when developing policies
for intersection management, we must try to find a sensible
solution to the possibility of deadlocks. In the Automated
Guided Vehicle domain, for instance, a common approach is
to model the infrastructure system as a Petri net (cf. [5]),
although full deadlock prevention can be computationally
expensive in such settings.

7. REFERENCES
[1] Ana L. C. Bazzan. A distributed approach for

coordination of traffic signal agents. Autonomous
Agents and Multi-Agent Systems, 10:131–164, 2005.

[2] Ana L.C. Bazzan, Denise de Oliveira, and Bruno C.
da Silva. Learning in groups of traffic signals.
Engineering Applications of Artificial Intelligence,
23(4):560 – 568, 2010.

[3] Guy Desaulniers, André Langevin, Diane Riopel, and
Bryan Villeneuve. Dispatching and conflict-free
routing of automated guided vehicles: An exact
approach. International Journal of Flexible
Manufacturing Systems, 15(4):309–331, November
2004.

[4] Kurt Dresner and Peter Stone. A multiagent approach
to autonomous intersection management. Journal of
Artificial Intelligence Research, pages 591–656, 2008.

[5] Maria P. Fanti. A deadlock avoidance strategy for
AGV systems modelled by coloured Petri nets. In
Proceedings of the Sixth International Workshop on
Discrete Event Systems (WODES’02), 2002.

[6] Wolfgang Hatzack and Bernhard Nebel. The
operational traffic problem: Computational
complexity and solutions. In A. Cesta, editor,
Proceedings of the 6th European Conference on
Planning (ECP’01), pages 49–60, 2001.

[7] Matthew Hausknecht, Tsz-Chiu Au, and Peter Stone.
Autonomous intersection management:
Multi-intersection optimization. In IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS 2011), pages 4581–4586, San
Francisco, CA, USA, September 25–30 2011. IEEE.

[8] Ying-Chin Ho. A dynamic-zone strategy for

vehicle-collision prevention and load balancing in an
AGV system with a single-loop guide path. Comput.
Ind., 42(2-3):159–176, 2000.

[9] Chang W. Kim and Jose M.A. Tanchoco. Conflict-free
shortest-time bidirectional AGV routeing.
International Journal of Production Research,
29(1):2377–2391, 1991.

[10] Jung H. Lee, Beom H. Lee, and Myoung Hwan Choi.
A real-time traffic control scheme of multiple AGV
systems for collision-free minimum time motion: a
routing table approach. IEEE Transactions on Man
and Cybernetics, Part A, 28(3):347–358, May 1998.

[11] Ryan Luna and Kostas E. Bekris. Push and swap:
Fast cooperative path-finding with completeness
guarantees. In International Joint Conference on
Artificial Intelligence (IJCAI), 2011.

[12] Samia Maza and Pierre Castagna. Conflict-free AGV
routing in bi-directional network. In Proceedings of the
8th IEEE International Conference on Emerging
Technologies and Factory Automation, volume 2, pages
761–764, Antibes-Juan les Pins, France, October 2001.

[13] Samia Maza and Pierre Castagna. A
performance-based structural policy for conflict-free
routing of bi-directional automated guided vehicles.
Computers in Industry, 56(7):719–733, 2005.

[14] Tatsushi Nishi, Masakazu Ando, and Masami Konishi.
Experimental studies on a local rescheduling procedure
for dynamic routing of autonomous decentralized
AGV systems. Robotics and Computer-Integrated
Manufacturing, 22(2):154–165, April 2006.

[15] David Silver. Cooperative pathfinding. In Proceedings
of the 1st Conference on Artificial Intelligence and
Interactive Digital Entertainment, 2005.

[16] Trevor Standley. Finding optimal solutions to
cooperative pathfinding problems. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-10), pages 173–178, 2010.

[17] A. W. ter Mors. The world according to MARP. PhD
thesis, Delft University of Technology, March 2010.

[18] Adriaan W. ter Mors. Conflict-free route planning in
dynamic environments. In Proceedings of the 2011
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2166–2171, San Francisco,
USA, September 2011.

[19] Adriaan W. ter Mors, Cees Witteveen, Jonne Zutt,
and Fernando A. Kuipers. Context-aware route
planning. In Proceedings of the Eighth German
Conference on Multi-Agent System Technologies
(MATES), Lecture Notes in Artificial Intelligence,
Leipzig, Germany, September 2010. Springer.

[20] Adriaan W. ter Mors, Jonne Zutt, and Cees
Witteveen. Context-aware logistic routing and
scheduling. In Proceedings of the Seventeenth
International Conference on Automated Planning and
Scheduling, pages 328–335, 2007.

[21] A.W. ter Mors and C. Witteveen. Plan repair in
conflict-free routing. In Been-Chian Chien, Tzung-Pei
Hong, Shyi-Ming Chen, and Moonis Ali, editors,
Proceedings of the The Twenty Second International
Conference on Industrial, Engineering & Other
Applications of Applied Intelligent Systems IEA-AIE
2009, Lecture Notes in Artificial Intelligence, pages

46–55, Berlin, Heidelberg, June 2009. Springer Verlag
LNAI. June 24-27, 2009.

[22] Matteo Vasirani and Sascha Ossowski. A
market-inspired approach to reservation-based urban
road traffic management. In K. Decker, J.S. Sichman,
C. Sierra, and C. Castelfranchi, editors, Proceedings of
the 8th International Conference on Autonomous
Agents and Multiagent Systems, volume I, pages
49–56, Richland, SC, May 2009. IFAAMAS. May
10-15, 2009.

[23] Matteo Vasirani and Sascha Ossowski. A
computational market for distributed control of urban
road traffic systems. IEEE Transactions on Intelligent
Transportation Systems, 12(2):313–321, June 2011.

