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Abstract
The goal of adaptive traffic management is to adjust
the timing of traffic signals at intersections in order
to dynamically adapt, in real time, to traffic condi-
tions. The SCOOT system, a commercial product
widely deployed around the world, focuses on ad-
justing three traffic signal control parameters: split,
cycle and offset. By responding to data collected
from sensors embedded in roadways, SCOOT can
effectively adjust to expected fluctuations in traf-
fic, such as those that occur regularly during com-
muting hours. However, SCOOT does not perform
optimally when there are unexpected disruptions in
traffic flow, such as after the occurrence of an ac-
cident or during events that cause traffic conditions
to deviate from the norm. The work presented here
outlines an empirical study of the three SCOOT pa-
rameters, comparing the adjustment algorithm em-
ployed by SCOOT to a number of different adap-
tive methodologies, including two novel schemes.
Experimental results, analysed across a range of
different traffic flows, demonstrate that the novel
methods perform as well as SCOOT under normal
conditions and better under disruptive conditions.

1 Introduction
The notion of adaptive traffic management has been con-
sidered in a range of fields, from traffic control engineering
to intelligent systems science. The goal is to maximise the
throughput of vehicles across networks of roadways: reduc-
ing travel times for individuals, minimising wait times at in-
tersections and avoiding collisions. There are a number of
desirable subgoals, such as reducing the amount of pollution
created by decreasing travel times, lowering petrol costs by
shortening idle times and diminishing stress on commuters.

Within the multi-agent systems (MAS) community, a pop-
ular approach is to represent each vehicle as an autonomous
agent and employ mechanisms that require the vehicles to
negotiate with each other [Carlino et al., 2013; Dresner and
Stone, 2004; Vasirani and Ossowski, 2012]. However, wide-
spread deployment of autonomous vehicles in real-world en-
vironments is not a near-term reality. There are many chal-
lenges that remain before self-driving cars will be used by

the masses. First, there is the development and deployment
of the cars themselves. Google’s self-driving cars are widely
talked about, with a fleet of autonomous cars that have col-
lectively covered over 700K miles [Gomes, 2014]. Yet, these
cars navigate using special maps that have enhanced infor-
mation, such as location of traffic signals and driveways. As
well, they cannot avoid unmarked potholes and would not
be able to obey commands from a traffic officer [Gomes,
2014]. Second, there is the current state of connectivity. The
communication infrastructure necessary for broad vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) currently
does not exist. In the USA, the National Highway Traffic
Safety Administration (NHTSA) is currently pushing for the
use of V2V technology nationwide, arguing that it could dra-
matically reduce accidents by warning of dangers ahead; but,
to date, there is no nationwide agreement or timeline for im-
plementation. It is estimated that self-driving cars will not
completely supercede human-driven cars until at least the
year 2040 [Litman, 2015; Shanker et al., 2013].

Motivated by these practical contraints, our work does not
rely on the presence of autonomous vehicles—instead, we
focus on adaptive solutions to traffic problems that can be
deployed within today’s infrastructure. An intersection is
a prominent feature of existing infrastructure, where roads
cross each other and the need to coordinate access to the
intersection is vital for preventing collisions. The task of
intersection management is primarily achieved using traf-
fic signals, familiar artifacts that are well integrated into
road infrastructures world-wide1. Traditionally, intersection
management by traffic signals is implemented as fixed pe-
riods of green, amber and red lights. In an effort to im-
prove on the performance of fixed traffic signals, adaptive
Urban Traffic Controllers (UTCs) have been developed and
deployed in many cities around the world [Wang, 2005;
Mladenovic and Abbas, 2013; Papageorgiou et al., 2003].
Adaptive UTCs use information about current road condi-
tions and determine, some in real-time, the best signal set-
tings. These systems attempt to harmonise the interplay be-
tween all aspects of traffic (private cars, public transporta-

1In some countries, another common feature of the infrastructure
is a roundabout (also called a rotary or traffic circle); but these are
controlled through norms and driver behaviour, and do not fall into
the category of technologies that are controlled through infrastruc-
ture external to the driver, which is what we consider here.



Figure 1: The SCOOT Model [Limited, 2016]. The red stripe
across the road behind the yellow car in the figure illustrates
an induction-loop road sensor.

tion, cyclists and pedestrians) in areas ranging in size from
a few city blocks to entire cities. The majority of adaptive
UTCs employ optimisation algorithms which are costly to de-
velop, calibrate, maintain and expand [Wang, 2005]. Exam-
ples of deployed UTCs include: SCOOT2 [Hunt et al., 1981],
RHODES [Mirchandani and Wang, 2005] and OPAC [Gartner
et al., 2001]. We focus on SCOOT because it is a popular sys-
tem, it is deployed in our local city and we have access to data
for modelling. The remainder of this paper is organised as fol-
lows. Section 2 describes how SCOOT works. Our approach
is presented in Section 3 and experiment design in Section 4.
Our results are presented in Section 5 and discussed in Sec-
tion 6. Section 7 reviews other adaptive approaches to traffic
control, and Section 8 closes with a summary and directions
for future research.

2 SCOOT
SCOOT (Split, Cycle and Offset Optimisation Technique) is
a centralised, real-time system that minimises delay and pre-
vents congestion by coordinating small sets of traffic signals,
called regions. The intersections within a region always form
a linear path, i.e., signal timings are optimised to improve
traffic flow in a single direction. SCOOT responds to data
collected from induction-loop sensors embedded in roadways
(Figure 1), which are simple counter devices that trigger when
vehicles drive over them. Using the sensor data, SCOOT re-
sponds effectively to expected fluctuations in traffic.

Traffic can flow into an intersection from multiple direc-
tions, each of which is called a link. The degree of saturation
of an intersection is a measure of its level of use, i.e., the
amount of traffic demand compared to its maximum capac-
ity. The traffic signal has a phase for each link which se-
quences through a period of green time, followed by a period
red time3. SCOOT adjusts three traffic signal control parame-
ters, as follows:

2http://www.scoot-utc.com
3Typically, red time is preceded by a short period of amber (yel-

low) time; in some countries, green time is preceded by a short pe-
riod of joint amber and red time.

• split—The amount of green time allocated to each indi-
vidual link is called split. Five seconds before a phase
change, SCOOT considers the effect on the degree of sat-
uration caused by advancing (terminating the phase), re-
tarding (extending the phase) or holding (allowing the
phase to continue to termination). SCOOT selects the op-
tion that reduces the degree of saturation the most. The
split is adjusted in increments/decrements of 4 seconds.

• cycle—Cycle length is the total amount of time it takes
for every link to receive its complement of green time.
SCOOT optimises cycle length by examining the road-
way with the highest degree of saturation. If that is
greater than 90%, then the cycle length (for the entire
region) is increased. SCOOT decreases the cycle length
if every roadway entering the intersection has a degree
of saturation greater than 90%. Cycle length changes
are made in increments (or decrements) of 4, 8, 16,
and 32 seconds (the shorter the cycle, the smaller the
change) [Halkias, 1997].

• offset—A green wave is a phenomenon that occurs
when a vehicle crosses many intersections in a row and
all the traffic signals show green, so the vehicle does not
have to stop at each intersection. In order for a green
wave to occur, the traffic signals at adjacent intersections
in a given path must be synchronised. The offset param-
eter represents the difference between the start of green
time at two consecutive intersections. SCOOT checks the
offset once at the end of every cycle and attempts to min-
imise the number stops required per vehicle by adjusting
the offset in increments/decrements of 4 seconds.

Although SCOOT responds well to expected changes, such
as regular increases in directional traffic flows during com-
muting times, SCOOT does not perform optimally when there
are unexpected disruptions in traffic flow, such as when there
are accidents or entertainment events that suddenly cause pat-
terns to deviate from the norm. In our work, we have devel-
oped a set of traffic patterns that test the efficacy of SCOOT
under different conditions. We use these patterns to compare
several different parameter adjustment policies to the SCOOT
benchmark, including two novel schemes that take a market-
based approach. Experimental results, analysed across differ-
ent traffic flows, demonstrate that our novel methods perform
as well as SCOOT under normal conditions and better than
SCOOT under disruptive conditions.

3 Our Approach
Our approach to traffic control parameter optimisation con-
siders the three SCOOT parameters described above. In order
to tune these parameters for real-time traffic control, we ad-
dress a number of questions: Which parameters should be
adjusted? When should the parameters be adjusted? What
data is used to inform an adjustment? and How should the
parameters be adjusted?

Our approach to traffic control revolves around the notion
that traffic control is a coordination problem where intersec-
tions work together to minimise delay. Thus, we decom-
pose the intersection into a multi-agent system and utilise an



auction-based approach to facilitate coordination amongst its
agents. Our approach shares some similarities with SCOOT: it
manages traffic flow using the same three parameters (cycle,
split and offset), uses degree of saturation to measure road
usage and uses transportation technology (vehicle detectors)
that is currently available. However, our approach has a many
significant differences. Adjustments to the traffic control pa-
rameters are made periodically and intersections are not clus-
tered into fixed, pre-defined regions. Without these restric-
tions, our approach allows our mechanism to function on a
much larger scale than SCOOT.

We first experimented with the idea of intersections as
agents, informed in real-time by road sensors, in Raphael et
al. [2015], where we presented our SAT mechanism. Here we
expand upon that work in several ways. First, we present two
new strategies for the behaviour of our traffic control agents.
Second, we present experimental results that demonstrate the
robustness of our approach in the face of unexpected disrup-
tions in traffic flow. Finally, we compare our approach with a
broad set of alternate strategies.

In both approaches, we use an intersection agent as an auc-
tion manager and traffic signal agents that represent the traffic
signal phases. A phase represents multiple traffic streams. A
single phase can service multiple vehicle manoeuvres. For
example, the first phase of a traffic signal may allow through
traffic and left turns. We use a two-phase signal plan: one
light phase for north/south-bound traffic and the other phase
for west/east-bound traffic. Thus, at every intersection, there
is an intersection agent working in concert with two traffic
signal agents. Our traffic signal control mechanism employs
a first-price, single-item auction. As traffic flows through an
intersection, auctions take place at fixed intervals4. The traffic
signal agents bid against each other; the winner is the agent
with the highest bid. The winning agent then makes a single
adjustment to its traffic signal timing.

3.1 GRACE
Our initial investigation into traffic control mecha-
nisms [Raphael et al., 2015] was limited in its ability
to react to changing traffic conditions because only green
time was adjusted (in 5-second segments). Our new method
presented here, GeneRal Purpose Auction-based Traffic
ControllEr (GRACE), allows traffic signal agents to change
all three variables. Adjustments are made in discrete steps, s
(measured in seconds), defined as:

s = 〈∆green time,∆offset ,∆cycle length〉

For example, if s = 〈3,−4, 10〉, then the green time would be
increased by 3s, the offset reduced by 4s and the cycle length
increased by 10s. A finite set of possible adjustment values
is defined, specific to each mechanism (see below).

In [Raphael et al., 2015], we measured the level of use of a
roadway by calculating saturation , the ratio of the volume

4The optimal length of the fixed interval varies with each mech-
anism, and the values we use in our work were determined experi-
mentally. Detailed discussion of these results is beyond the scope of
this paper, but can be found in our technical reports.

of traffic (as measured by road sensors) to its estimated max-
imum capacity. However, this ratio does not quantify how a
change to green time (or cycle length) effects the level of use
in a lane(s), so GRACE uses degree of saturation [Lee et al.,
2002; Roess et al., 2009], X , which is defined as:

X =
v

c
∗ L
g

(1)

where: v is the volume of traffic read by the traffic signal
agent; c is the maximum possible volume of traffic (in vehi-
cles per hour); L is cycle length; and g is green time. Traffic
signal agents in GRACE are characterised by their utility func-
tion and their bidding rule. Next, we present two different
GRACE-based traffic signal agents: DCF and MMDOS.

3.2 DCF
In Dynamic Coalition Formation (DCF), traffic signal agents
find the best offset to reduce the number of vehicles that will
have to stop for the red light and a green time that will min-
imise the maximum degree of saturation. At an intersection,
each lane of traffic flow may have a different degree of satu-
ration. DCF attempts to minimise the degree of saturation of
the lane experiencing the highest level of use. The utility of
adjustment s is given by:

U(s) = −[X + D(s)] (2)

where the values for the degree of saturation Xt and estimated
number of stopped vehicles D(s) reflect the adoption of ad-
justment s. The bidding rule for DCF is:

b = X (3)

The possible adjustment values for DCF are: ∆green time ∈
{0 . . . 5}, ∆offset ∈ {−4, 0, 4}, and ∆cycle length = 0
(i.e., cycle length does not change).

3.3 MMDOS
In Minimise Maximum Degree Of Saturation (MMDOS), traf-
fic signal agents minimise the degree of saturation of the lane
experiencing the highest level of use. The utility of adjust-
ment s in MMDOS is given by:

U(s) = −[X] (4)

The biddings rule for MMDOS is:

b = X + u (5)

where u is the length of the queue of cars on the roadway as-
sociated with the phase under the agent’s control. The pos-
sible adjustment values for MMDOS are: ∆green time ∈
{1 . . . 5}, ∆offset = 0, and ∆cycle length = 0 (i.e., off-
set and cycle length do not change).

4 Experiments
We evaluated GRACE in a simulated 5 × 5 grid-based city
plan (Figure 2). Our traffic control experiments were con-
ducted on Simulation of Urban MObility (SUMO) [Krajzewicz
et al., 2012], an open source microscopic traffic simulator.
All traffic signals used a two-phase signal plan: during one



Figure 2: Grid-based city plan with intersection layout.

phase, north/south bound traffic passed through the intersec-
tion, while west/east bound traffic passed in the other phase.
The signal plan did not include dedicated turning (right or
left) phases, therefore left and right turns were given lower
priority than through movements, i.e., vehicles turning left or
right waited until it is safe to do so. All the roads were fit-
ted with road sensors to collect traffic volume data. Also, the
four corner traffic signals were disabled because there were
no conflicting traffic movements at those intersections. Thus,
in our experiments, GRACE adaptively controls twenty-one of
the intersections.

4.1 Traffic Conditions
For the experiments described here, we utilised three different
traffic scenarios to evaluate the performance of our market-
based mechanism. The scenarios employed sudden increases
in traffic volume (or intensity) to disrupt traffic flow. The final
scenario replicated traffic conditions that may occur during a
sporting event. The scenarios are:

• Structured is traffic that flows through the network with
an identifiable (e.g., commuter) path with heavy flow;

• Unstructured is traffic flow with no identifiable path
with heavy flow; and

• Football emulated traffic conditions before, during and
after a football match. The traffic flow represented a
worst-case scenario where there is a sudden sharp in-
crease in traffic demand. There are two disruptions: first,
fans enter the area of the arena (30 minutes after the sim-
ulation started); and second, fans exit the arena (approx-
imately 90 minutes later).

We raised the intensity of traffic at the one-hour mark dur-
ing Structured and Unstructured traffic conditions. Structured
represents the traffic pattern that is ideal for an adaptive urban
controller such as SCOOT. Each set of experimental condi-
tions were repeated 30 times to attain suitable statistics.

We evaluated the performance of the traffic controllers us-
ing the metric travel time. Travel time is by far the most
common way of measuring the effectiveness of traffic con-
trollers. We examined travel time in several different forms.
First, we looked at the average travel time of all the vehi-
cles across the 30 simulations. Second, we collected data on
the average travel time of vehicles as they finished their jour-
ney at each time step. We compare the performance of our
market-based controller to SCOOT (described in Section 1),
fixed-time traffic signals (Section 4.2) and an auction-based
traffic controller that learns a bidding strategy (Section 4.3).

4.2 Fixed-time Signals
We also implemented a fixed-time traffic signal controller,
FXM. The fixed-time traffic signal controllers represented
traditional, non-adaptive, traffic signal devices. In the case
of fixed-time traffic signal controllers, all three traffic con-
trol parameters remain constant. The traffic signals displayed
the same light sequences for the same duration every cycle.
We chose to use the initial traffic signal timing settings used
by the adaptive mechanisms as the settings for the fixed-time
traffic signals. Thus, any differences in performances can be
attributed to the adaptive nature of the controller (and not ini-
tial signal timings). The fixed-time traffic signals have a cycle
length of 80 seconds, and 87.5% of that is allotted to the split.

4.3 Learning to Bid
We implemented a version of the auction-based traffic con-
trol mechanism of Mashayekhi and List [2015] in our SUMO
traffic controller evaluation testbed. Of the three parameters
adjusted by SCOOT, Mashayekhi and List modify only one,
the split (green time). Their auction determines the amount
of green time in a phase as well as the order of the phases.
Mashayekhi and List used Reinforcement Learning (RL) to
learn a bidding strategy. The only major difference between
their implementation and ours was the number of movement
managers. In their work, each movement manager was as-
sociated with a single stream of traffic. In our version, there
were fewer movement managers because our test network did
not have dedicated turning lanes. Furthermore, Mashayekhi
and List did not specify an action space. Therefore, we dis-
cretised the bidding space to values [0 . . . 10] as our action
space. That is, whenever an agent bids, its bid amount is
some value between 0 and 10.

5 Results

Average Travel Time (std.)

Traffic Pattern

Policy Structured Unstructured Football

SAT 160.22 (8.22) 623.64 (42.31) 150.66 (9.10)
MMDOS 169.50 (7.31) 652.09 (48.57) 137.36 (5.35)
DCF 158.37 (4.98) 609.22 (32.80) 135.15 (4.84)

FXM 165.93 (1.38) 927.47 (107.39) 184.34 (7.13)
SCOOT 143.66 (4.85) 1931.35 (225.81) 233.42 (9.42)
RL 302.82 (17.70) 1038.09 (266.38) 200.89 (10.59)

Table 1: Average travel time of vehicles under different meth-
ods of traffic control.

We simulated our three scenarios using six different traffic
control methods: our earlier mechanism (SAT, from [Raphael
et al., 2015]), two new GRACE mechanisms (MMDOS and
DCF), and three baselines: a fixed-time traffic signal (FXM),
SCOOT, and the RL controller. In this section, we describe our



results, primarily the difference in performance of the con-
trollers with patterned traffic (e.g., Structured traffic) versus
non-patterned traffic (Unstructured and Football traffic).

Average travel times reflect time saved (or incurred) at in-
tersections due to adequate traffic flow. With Unstructured
and Football traffic, our market-based approaches outper-
formed all the other traffic controllers (Table 1). The worst
performing mechanism from our approaches did better than
FXM. DCF had the best overall average travel time in both
the Unstructured and Football traffic. In Unstructured traffic,
DCF reduced average travel time by 34.3% and 68%, com-
pared to FXM and SCOOT, respectively. For the simulated
football event, DCF reduced average travel time by 26.7% and
42%, compared to FXM and SCOOT, respectively. SCOOT had
the worst performance with the two non-patterned traffic sce-
narios. With Unstructured traffic, SCOOT increased average
travel time by over 100% and with the football match traffic
it increased travel time by 26% (this is compared to FXM).
However, SCOOT had the best performance with Structured
traffic (the second best time was achieved by DCF). RL per-
formed slightly worse than FXM with Unstructured and Foot-
ball traffic; it increased travel time by nearly 10% in both
cases.

Figure 3 provides a more detailed picture of travel time un-
der SCOOT control versus our DCF controller. At each time
step, as vehicles completed their journey, we captured their
average travel time. With Unstructured traffic, SCOOT’s travel
time begins to increase even before the occurrence of the dis-
ruption at the 3600th second (Figure 3b). Under SCOOT,
there is a sharp increase in travel times during the Unstruc-
tured disruption and it never recovers until the very end of
the simulation. During the half-hour influx of drivers begin-
ning at the 1800th second (Figure 3c), cars under DCF ex-
perienced significantly less delay than vehicles controlled by
SCOOT. Immediately after the disruption ends, the average
travel time peaks for both DCF and SCOOT, but SCOOT had
the highest increase in average travel times. Both methods
return to normal day-to-day travel times soon after the influx
ends. Again, for the second disruption, starting at the 9000th
second, traffic under SCOOT experienced far more delays than
DCF. Although SCOOT did better than DCF in overall perfor-
mance with Structure traffic, we find that there was signifi-
cant overlap (Figure 3a) in travel times between vehicles un-
der SCOOT control and vehicles controlled by DCF. In other
words, there were many vehicles under DCF control that ex-
perienced travel time as short as those found in SCOOT. In
Figures 3b and 4b, the SCOOT and RL simulations required
more time steps than the other traffic controllers. The dif-
ference in the simulation horizon is due to how SUMO (the
traffic simulator) works. SUMO does not terminate a simula-
tion until all the vehicles that have been spawned complete
their assigned trip. In all our simulations, the same number
of vehicles were spawned but delay caused by the traffic con-
trollers (e.g., SCOOT) resulted in a significant increase in the
simulation horizon.

We also collected cumulative averages as the simulations
ran (Figures 4). With Unstructured and Football traffic (Fig-
ures 4b and 4c), we see how quickly SCOOT’s performance di-
verges from the market-based approaches. Our market-based
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Figure 3: A comparison of average travel times of vehicles
that have completed their journey at each time step. Begin-
ning and end of disruptions are marked by dotted lines.
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Figure 4: Cumulative average travel times. Beginning and
end of disruptions are marked by dotted lines.

approaches did experience some increase in travel time dur-
ing disruptions (e.g., the period from 1800th second to the

3600th second in Figure 4c), but never peaked as high as
SCOOT. With Structured traffic, the traffic scenario where
SCOOT had the best performance, we find that our approach
closely matched FXM (Figure 4a). RL had the worst perfor-
mance under Structured traffic. In Figure 4a, we see that RL
never showed any signs of adapting to the traffic demands.
Also, in Unstructured traffic (Figure 4b) RL’s performance
closely mirrors FXM but in Football traffic (Figure 4c) it be-
haved more like SCOOT.

6 Discussion
Our results clearly demonstrate the dramatic effect traffic dis-
ruptions may have on the performance of SCOOT. Although
our market-based approach utilises the same traffic parame-
ters as SCOOT, we manipulate the split, offset and cycle time
in a completely different manner. SCOOT is simply unable to
satisfy the changing traffic demands and conflicting intersec-
tion manoeuvres (it is the latter that our approach excels at).
SCOOT was designed to optimise the signal timing of small
sets of traffic signals (that form a linear path). This severely
restricts the ability of SCOOT to adapt to unexpected cross
traffic. SCOOT performed well with traffic that had some es-
tablished pattern of behaviour such as Structured, but could
not cope with the Unstructured and Football scenarios. In
Structured traffic (and the other scenarios like it) the scope of
the control problem is more manageable than in other traffic
scenarios.

RL did not perform as well as expected and our results did
not resemble those found in [Mashayekhi and List, 2015].
There are a number of factors inherent to reinforcement-
learning that could have contributed to its poor performance.
For example, state space size (and representation) can affect
learning, i.e., convergence to an optimal policy [Bakker et al.,
2010; Sutton and Barto, 1998].

Lastly, DCF and MMDOS represents our latest efforts to ex-
pand the capabilities of our market-based traffic controllers.
One of the most important improvements to our approach is
the new way in which it selects green time shifts. SAT can
only make changes to green time in 5 second increments.
DCF and MMDOS can make smaller adjustments, if neces-
sary, to fine-tune green time allocations. Although DCF does
attempt to form green waves, this ability does not always pro-
vide much of an advantage over SAT. DCF does use a constant
cycle length and this may have negatively effected its perfor-
mance. We will investigate this question in future work.

7 Related Work
Our approach is inspired by the work of Tumer and
Agogino [2007], who applied MAS to the problem of air traf-
fic control. Rather than modelling airplanes as autonomous
agents, the authors made a counter-intuitive choice and
defined waypoints—intermediate positions in an airplane’s
flight path—as the agents. These static waypoints negotiated
for the “right” to accept a plane at a particular instance in
time. We adopt a similar approach to traffic control and select
geographically fixed agents whose behaviour is influenced by
traffic conditions. This is very different from many other traf-
fic control systems that view the vehicles—rather than the



intersections—as their focus. To address the parameter ad-
justment questions from Section 3, we employ auctions to
expedite parameter adjustments and coordinate intersections.

The variety of approaches to auction-based traffic control
demonstrates the versatility of auctions as a means of re-
source allocation. Dresner and Stone [2004] did away with
traffic lights entirely; relying instead on a reservation sys-
tem to work out when it is safe to enter an intersection.
Auctions can be deployed as a tool to determine road pric-
ing (or congestion charge) in order to optimise route selec-
tion [Iwanowski et al., 2003; Markose et al., 2007]. Auc-
tions can also be used as complete, intersection-level, traffic
controllers. Carlino et al. [2013] described a traffic control
system where second-price sealed bid auctions were used at
intersections to determine order of use. Vehicles have an em-
bedded agent bidding on their behalf, which is referred to as
the wallet agent. A system agent also bids in a manner that
facilitates traffic flow beneficial to the entire transportation
system—while the wallet agent is solely (selfishly) concerned
with getting its vehicle to its destination in the least expen-
sive and quickest way. The authors tested different modes and
found that the typical fixed-length traffic signal performed the
worst in terms of reducing trip times.

One of the more interesting properties of utilising an auc-
tion mechanism as a component of traffic control is that it
allows the intersection to consider the needs of individual
drivers. Schepperle et al. [2007] described an intersection
controller called Initial Time-Slot Auction (ITSA) which is
valuation-aware—a mechanism that takes into consideration
the individual’s cost of waiting at an intersection. In ITSA,
vehicles approach and register with an intersection. An in-
tersection agent executes a second-price sealed-bid auction
for the most current time slot available. The authors also de-
scribed two variants of ITSA: a mechanism is included to pre-
vent starvation5 where auctions are suspended if vehicle wait-
ing time has reached some fixed limit; and ITSA+SUBSIDIES,
which considers subsidies where vehicles that have not par-
ticipated in an auction yet can influence the auction of the
vehicles in front of them. The authors compared their traf-
fic controller to the reservation-based system in Dresner
and Stone [2004]. Both ITSA and ITSA+SUBSIDIES were
able to reduce average travel time while minimising aver-
age weighted waiting time, as compared to the reservation-
based system. ITSA+SUBSIDIES was better at reducing aver-
age weighted waiting time.

Vasirani et al. [2012] expanded on Dresner and
Stone’s [2004] work by examining the performance changes
to a reservation-based system where time slots were allocated
using a combinatorial auction (CA). As drivers approached
the intersection, reservations were awarded through the auc-
tion, instead of simply handed out in order of arrival (the
Dresner and Stone approach). In this way, drivers express
their true valuation for a contested reservation. In a network
with a single intersection, the authors looked at the delay ex-
perienced by drivers based on the amount they were willing

5In this context, starvation refers to one traffic flow being given
a green signal for (too) long periods, and the other (stopped) traffic
flows are “starved” for green time.

to “pay” to use the intersection. They found that initially hav-
ing a willingness to pay does decrease delay, but eventually
this levels off. However, CA was found to increase overall
delay. As the intensity of traffic increased, CA experienced
far more delays and rejected reservations than the first-come,
first-served approach. Both reservation-based systems de-
scribed in [Dresner and Stone, 2004; Vasirani and Ossowski,
2012] rely on vehicle agents having the capability to commu-
nicate with each other.

Other researchers have investigated approaches simi-
lar to our auction-based mechanism. Mashayekhi &
List [Mashayekhi and List, 2015] designed a multi-agent
auction-based traffic controller. The major difference be-
tween our approach and [Mashayekhi and List, 2015] is in
the bidding strategy. We designed our bidding strategy from
common traffic engineering practices while Mashayekhi &
List used Reinforcement Learning to acquire a bidding strat-
egy. Another significant difference is their traffic controller
needs vehicle-to-infrastructure communication: as vehicles
approach an intersection, they must report their presence to
the movement managers via tokens. Our methods do not rely
on such technologies.

8 Summary
We have presented our exploratory work on automated traf-
fic control systems that do not require the existence of ve-
hicle agents and can adjust dynamically as road conditions
change. Moreover, our approach uses local traffic state infor-
mation gathered from induction-loop vehicle detectors. As a
result, our market-based traffic control methods are not con-
strained by the lack of transportation communication devices
and protocols. Locally acting agents provide a robust traffic
control system that maintains performance gains during and
after traffic flow disruptions.

In patterned traffic, such as Structured, SCOOT performs
well, but so do fixed-time signals. Thus, when recognised,
these traffic patterns can be exploited; but this is not always
the case in large cities where traffic disruptions (such as ac-
cidents or local events) can easily perturb the norm. Through
a broad series of experiments, we have demonstrated the ef-
ficacy of our new approach, in comparison with our earlier
work and several benchmarks (SCOOT, fixed-time signals and
a reinforcement learning approach). The experimental results
highlight the impact of including offset and fine-tuned green
time adjustments in bidding, which produce improvements in
travel time. Our next steps with this work involve incorpo-
rating elements in the bidding to improve green waves. We
will also continue evaluating the traffic parameters discussed
in this paper with the aim of developing a clearer picture of
the impact that adjusting split, cycle and offset (and various
combinations thereof) has on travel time.
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