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Abstract

Marginal tolls are known to provide the exis-
tence of an optimal equilibrium in atomic con-
gestion games, but unlike nonatomic games,
there might be additional equilibria even with
linear cost functions on resources. In this pa-
per, we show that in games with a large number
of players, all equilibria are near-optimal.

1 Introduction

It is well known that selfish routing results in suboptimal
social behavior and in increased latency [Pigou, 1920].
The modern literature formalizes selfish routing scenar-
ios as congestion games, where the inefficiency due to
strategic behavior is quantified as the Price of Anarchy
(PoA)– the ratio between the optimal total latency and
the maximal total latency in equilibrium [Roughgarden
and Tardos, 2007].

The game theoretic literature on selfish routing can
be classified into models of atomic (unsplittable) flow
and non-atomic flow, where in the latter, each agent ac-
counts for an infinitesimally small fraction of the total
congestion. While in both models a pure equilibrium is
guaranteed to exist, and can be found via a simple lo-
cal best-response dynamics, atomic congestion games are
considered more challenging to analyze. Atomic games
may have multiple equilibria of different costs, and the
price of anarchy can be much higher than in nonatomic
games.

The PoA is well understood in congestion games, both
atomic and nonatomic, and almost independent from the
topology of the network [Roughgarden, 2009]. That is,
the inefficiency depends mostly on the edge latency func-
tions, and a simple network of two parallel edges (or
roads) is sufficient to create instances with the highest
possible PoA.

Still, it is interesting to look to change the behavior
of agents by charging them for using a resource. It has
been known since [Beckmann et al., 1956] that to en-
force optimal behavior in nonatomic games (i.e. such
that all equilibria have minimum total latency), it is suf-
ficient to impose marginal congestion tolls, i.e., charge
each agent based on the latency he currently adds to
the other agents.1 Note that we assume tolls are dy-
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1It is typically assumed that the tolls themselves are not
calculated as part of the total cost, e.g. because they return

namic that depend on monitoring the actual congestion
on one hand, but can be easily computed. This is in con-
trast to static tolls that typically depend on the optimal
congestion, and often require extensive computation (see
e.g. [Bonifaci et al., 2011]).

For atomic games, it is known that marginal tolls
guarantee the existence of at least one optimal equi-
librium [Sandholm, 2007], however there may be other
inefficient equilibria, even in games with linear laten-
cies [Caragiannis et al., 2010a]. The problem becomes
even more involved if we take into account more general
notions of equilibrium such as mixed and correlated equi-
librium. For a specific classes of atomic routing games,
marginal tolls guarantee optimal behavior in any pure
equilibrium. This is the case for example for symmetric
networks with parallel links (also known as resource se-
lection games) since in such networks the equilibrium is
unique. The class of networks for which marginal tolls
are optimal was extended first in an unpublished (and
unfinished) work by Singh [2008]. However Singh’s result
was very recently refuted by Igal Milchtaich (personal
communications) who provided the correct characteriza-
tion.

Several other papers studied more complicated taxa-
tion schemes and how low they can affect the PoA [Fo-
takis and Spirakis, 2008; Caragiannis et al., 2010a].

Our contribution We show that for any fixed net-
work, if the number of players is sufficiently large, then
any equilibrium under marginal tolls is near-optimal.
Further, this result extend to mixed, correlated, and
coarse correlated equilibria.

We use the smoothness framework [Roughgarden,
2009], which enables the PoA bounds to be established
with relatively short and simple proofs.

We also consider agents with variable sensitivity to
monetary tolls [Cole et al., 2006; Karakostas and Kol-
liopoulos, 2004; Fotakis et al., 2010], reflecting how
agents trade-off money for time. As discussed in [Yang
and Zhang, 2008; Meir and Parkes, 2015b], the parame-
ter may be unobservable, and thus unknown to the cen-
tral authority setting the tolls. Thus, following [Meir
and Parkes, 2015b] and in contrast to most of the mech-
anism design literature, we assume that a marginal toll
is applied, and analyze the equilibrium for a population
as the sensitivity parameter varies.

to the society indirectly, or because the central authority only
cares about the latency. Non-refundable tolls are also stud-
ied [Cole et al., 2006] but not in this paper.



Along the way, we state formally some known results
on marginal tolls that seem to have been overlooked in
the recent study of atomic congestion and routing games.

2 Preliminaries

For an integer m, [m] = {1, 2, . . . ,m}. We use bold
letters to denote vectors, e.g., a = (a1, . . . , am).

Following the definitions in [Roughgarden, 2007], a
routing game is a tuple G = 〈V,E,N, c,u,v〉, where

• (V,E) are vertices and edges of a directed graph;

• N is a finite set of agents of size n;

• c = (ce)e∈E , where ce(x) ≥ 0 is a non-decreasing
function indicating the cost incurred when x agents
use edge e (ce are called latency functions);2

• u,v are vectors of n vertices each, where (ui, vi) are
the source and target nodes of agent i;

We denote by Ai ⊆ 2E the set of all directed paths
between the pair of nodes (ui, vi) in the graph. Thus
Ai is the set of actions available to agent i. We denote
by A = ∪iAi the set of all directed source-target paths.
A routing game is symmetric (also called single-source-
single-target) if all agents have the same set of actions,
i.e., Ai = A for all i.

An action profile a = (ai)i∈N specifies the path ai ∈
Ai of each agent i, and A = ×i∈NAi is the set of all
action profiles. We denote by se(a) ∈ N the congestion
on edge e ∈ E in profile a, i.e., se = se(a) = |{i ∈ N :
e ∈ ai}| (a is omitted when clear from context).

The cost for agent i in profile a is summed over all
edges, Ci(a) =

∑
e∈ai ce(se). The social cost in a profile

a in game G is attained by summing over all agents:

SC (G,a) =

n∑
i=1

Ci(a) =

n∑
i=1

∑
e∈ai

ce(se) =
∑
e∈E

sece(se). (1)

We denote by a∗ = a∗(G) = argmina∈A SC(G,a) the
profile that minimizes the social cost (optimal profile).

A profile a is a pure Nash equilibrium if no agent
can gain by changing her strategy, i.e. if for all i ∈
N, a′i ∈ Ai, Ci(a) ≤ Ci(a−i, a

′
i), where a−i = (aj)j 6=i.

The definition of equilibrium extends to mixed and cor-
related strategies. We omit the formal details. Denote
by PNE(G) ⊆ A the sets of pure Nash equilibria of G.

The price of anarchy (PoA) of G is the ratio between
the social cost of worst equilibrium and the optimal pro-

file, i.e. PoA(G) = max{SC(G,a):a∈PNE(G)}
SC(G,a∗) (the defi-

nition of mixed- and correlated-POA is similar). It is
well known that the PoA can be upper bounded using
only the class of latency functions in G, regardless of
the structure of (V,E). For example, if all of ce are
affine functions (ce(x) = aex + be for ae, be ≥ 0) then
PoA(G) ≤ 5

2 , and this is true for mixed and correlated-
PoA as well [Roughgarden, 2009].

2Some authors prefer the term “arc” for directed edges.
We stick with the common term in computer science.

The price of stability (PoS) of G is similarly defined
as the ratio between the best equilibrium and the opti-
mal profile [Christodoulou and Koutsoupias, 2005], i.e.

PoS(G) = min{SC(G,a):a∈PNE(G)}
SC(G,a∗) .

Biased games We are interested in a biased game, in
our case because of the use of tolls.3 A biased game is a
pair (G, Ĝ) such that G, Ĝ are identical except in their
latency functions. Informally, we assume that players
behave according to the “biased costs” (ĉe)e∈E (e.g. play

an equilibrium of Ĝ), but social cost is measured w.r.t.
the “real costs” (ce)e∈E .

The biased price of anarchy/stability (BPoA/BPoS)

compares the equilibria of Ĝ to the optimum of G, using
the real social cost of both. Formally, BPoA(G, Ĝ) =
max{SC(G,a):a∈PNE(Ĝ)}

SC(G,a∗) , and similarly for BPoS.

The primary bias we will consider in this paper is
tolls, and in particular marginal tolls. That is, we de-
fine τe(x) = (x− 1)[ce(x)− ce(x− 1)], and set ĉMe (x) =
ce(x) + τe(x). Toll τe(x) is exactly the marginal cost in-
flicted upon the remaining x − 1 agents who use e due
to an additional agent. Other tool schemes T can be
similarly defined, replacing τe(x) with any other non-
negative function Te(x).

A toll scheme T strongly enforces optimal flow in
a game G if all equilibria of ĜT (i.e., the game with
biased costs ĉT ) are optimal in G (equivalently, if

BPoA(G, ĜT ) = 1) [Fotakis and Spirakis, 2008]. Sim-
ilarly, a toll scheme weakly enforces optimal flows if
BPoS(G, ĜT ) = 1.

Marginal tolls in the nonatomic Pigouvian model
were suggested by Beckmann [1956], who showed they
strongly enforce optimal flows in that model. Our goal
is to understand the power of marginal tolls in atomic
routing games.

3 Marginal tolls are weakly optimal

The marginal toll scheme for atomic games coincides
with the taxes proposed by Sandholm [2007], albeit
Sandholm defined taxes at the strategy level, rather than
tolls on particular edges. The observation that marginal
tolls weakly enforce optimal flows was also made in an
unpublished report by Singh [2008].4 We state the result
for the standard routing games framework.

Theorem 1 ([Sandholm, 2007; Singh, 2008]). For any
atomic congestion game G, there is a pure Nash equi-
librium in ĜM that is optimal in G. Equivalently,
BPoS(G, ĜM ) = 1.

3Biased games are also used to model cognitive and behav-
ioral traits such as risk aversion [Ordóñez and Stier-Moses,
2010] or altruism [Caragiannis et al., 2010b].

4Recent works on tolls in routing games seem to be un-
aware of this observation [Fotakis and Spirakis, 2008; Fotakis
et al., 2010; Swamy, 2012].



(a) c(x)

u

v

c a
(x

)
≡

2c
b (x

)
=
x

c
c (x

)
=
x

(b) a∗

u

v

{1}{2}{3}

(c) a′

u

v

∅{1}{2, 3}

Figure 1: Figure (1a) shows the base game G. The
other figures show the optimal state a∗ and the state a′

which is an additional equilibrium of both G and ĜT .

The theorem follows from a simple observation: ĜM

is a potential game [Rosenthal, 1973], whose potential

function φ(ĜM ,a) coincides with the social welfare of
G. Thus the optimum of SC(G,a) must a be local min-

imum of φ(ĜM ,a), i.e. a pure Nash equilibrium. Quite
strikingly, the theorem was extended to a much more
general framework where agents have idiosyncratic pref-
erences over strategies, and congestion may depend on
agents weight or other features [Sandholm, 2007; Singh,
2008].

Unfortunately, in atomic games there may be addi-
tional suboptimal equilibria.

Example 1. Consider a game with 3 parallel links,
E = {a, b, c} and 3 agents N = {1, 2, 3}. A1 = {a, b},
A2 = {b, c}, and A3 = {c}. Latency functions are
cb(x) = cc(x) = x, ca ≡ 2 (see Fig. 1). The modified cost
functions under any edge-independent nonnegative tolls
can be written as ĉb(x) = ĉc(x) = (1, 2+T (x), 3+T ′(x)).
The unique optimum is a∗ = (a, b, c) with cost SC(a∗) =
2+1+1 = 4, which is also a PNE. However, there is an-
other PNE a′ = (b, c, c) with cost SC(a′) = 1+2+2 = 5.

This remains a PNE of ĜT as long as ĉTb (x) = ĉTc (x):
agent 2 is not allowed to use edge a, and agent 1 does
not want to use it since ĉa(1) = 2 > 1 = ĉb(1).

This means that marginal tolls in atomic games do
not, in the general case, strongly enforce optimal flows.

4 Strongly Enforcing Optimal Flows

The prominent technique for proving PoA bounds is
smoothness analysis. In short, a game G is (λ, µ)-
smooth if for all a ∈ A there is a′ ∈ A such that∑
i∈N Ci(a−i, a

′
i) ≤ λSC(G,OPT(G))+µSC(G,a). If a

game G (not just a routing game) is (λ, µ)-smooth, then
PoA(G) ≤ λ

1−µ [Roughgarden, 2009]. Further, this holds

for the mixed, correlated, and coarse-correlated PoA as
well. For routing games, it is also shown that restricting
the class of latency functions results in smooth games.
For example, if all cost functions are affine, then G is
( 5
3 ,

1
3 )-smooth (thereby showing PoA(G) ≤ 5

2 ).

Given a biased game (G, Ĝ), we can similarly define
the property of biased smoothness.

Definition 1. (G, Ĝ) is (λ̂, µ̂)-biased smooth (BS), if
there is a′ s.t. for any profile a,∑
j∈N

(Cj(a)+Ĉj(a−j , a
′
j)−Ĉj(a)) ≤ λ̂SC (G,OPT(G))+µ̂SC (G,a).

(2)

It is easy to see that if G is (λ, µ)-smooth, then
(G,G) is (λ, µ)-BS: we set a′ = OPT(G), and note that∑
j∈N (Cj(a)+Cj(a−j , a

′
j)−Cj(a)) =

∑
j∈N Cj(a−j , a

′
j).

Theorem 2. Suppose that (G, Ĝ) is (λ̂, µ̂)-BS. Let
σ be any equilibrium (pure, mixed, correlated, or

coarse-correlated) of the game Ĝ. Then SC (G, σ) ≤
λ̂

1−µ̂SC (G,OPT(G)).

The original proof of Roughgarden [2009] for the PoA
(and coarse-correlated PoA) naturally extends to biased
smoothness.5 For completeness, we provide the proof
(almost identical to the ones in [Roughgarden, 2009;
Chen et al., 2011]) in the appendix.

In particular, (1, 0)-BS means that BPoA(G, Ĝ) = 1,

i.e. that any PNE of Ĝ is optimal in G.

We are interested in showing that (G, ĜM ) is BS for

some reasonable parameters λ̂, µ̂.

4.1 Smoothness in the large

When an atomic game becomes large, i.e. when we fix
the network and increase the number of players, there
is evidence that the game behaves more similarly to a
nonatomic game [Feldman et al., 2015]. We show how
to extend biased-smoothness analysis (and in particular
marginal tolls) to large atomic games. While we can
not apply the results of Feldman et al. directly, our
techniques are inspired by theirs.

Lemma 3. Let a,a′ be any two profiles in G with n
agents, and let ε = ε(G) = maxe∈E,x∈N(ce(x+1)−ce(x)).
Then

∑
j∈NCj(a−j , a

′
j)− Cj(a)) ≤

∑
e∈E(s

′
e−se)ce(se) +O(nε).

Proof.∑
j∈N

(Cj(a−j , a
′
j)− Cj(a))

=
∑
j∈N

((
∑

e∈a′j\aj

ce(se + 1) +
∑

e∈aj∩a′j

ce(se))−
∑
e∈aj

ce(se)).

5A similar definition of smoothness was applied, for exam-

ple, for finite congestion games with altruism: when Ĉ(a) is
a combination of C(a) and SC(a), then the BPoA coincides
with the “robust PoA” of Chen et al. [2011].



By definition of ε, we continue:

≤
∑
j∈N

((
∑

e∈a′j\aj

(ce(se) + ε) +
∑

e∈aj∩a′j

ce(se))−
∑
e∈aj

ce(se))

≤
∑
j∈N

(
∑
e∈a′j

ce(se)−
∑
e∈aj

ce(se)) +
∑
j∈N

∑
e∈E

ε

=
∑
j∈N

(s′ece(se)− sece(se)) + n|E|ε.

That is, we can write the sum of deviations as a func-
tion of the aggregate congestion (approximately).

Next, we think of a sequence of atomic games with
increasing n: We fix a network (V,E) and continu-
ous quasi-convex cost functions c = (ce)e∈E , where
ce : [0, 1] → R+. For ease of presentation, we consider
symmetric games (i.e. where there is just one source-
target pair u, v ∈ V ), although similar arguments ex-
tend to asymmetric games. This already induces a sym-
metric nonatomic game G̃ = (V,E, u, v, c). For n ∈ N,
we define Gn by setting Gn = (V,E,N, u, v, cn), where

cn(x) = c(x/n). Thus G̃ is the limit of (Gn)n=1,2,... (we
call it the limit game).

Our continuous cost functions can also be subject to
biases. Let ˆ̃ce be the biased continuous cost of c̃e, and
ĉne (x) = ˆ̃ce(x/n). Biased-smoothness for continuous cost
functions was defined and explored in [Meir and Parkes,

2015b]: we say that c is (λ̂, µ̂)-biased smooth w.r.t. ĉ if
for all t, t′ ∈ R+,

c(t)t+ ĉ(t)(t′ − t) ≤ λ̂c(t′)t′ + µ̂c(t)t.

Clearly, if c̃ is (λ̂, µ̂)-biased smooth w.r.t. ˆ̃c, then cn is

(λ̂, µ̂)-biased smooth w.r.t. ĉn for any n.

Theorem 4. Consider a limit game G̃, where c̃e are

quasi-convex and (λ̂, µ̂)-biased smooth w.r.t. the bias ˆ̃c.
Then for any δ > 0 there are ε > 0, n(ε) s.t. for all

n > n(ε), the atomic game (Gn, Ĝn) is ((1 + δ)λ̂, µ̂)-BS.
In particular,

BPoA(Gn, Ĝn) ≤ (1 + δ)
λ̂

1− µ̂
,

and this extends to any coarse-correlated equilibrium.

Proof. Let a′ = OPT(Gn), Zn = SC(Gn,a′). Since
SC(Gn,a′) = Ω(n) (the cost for each agent is at least
some constant), we write Zn > ρn for some ρ > 0 and
n > n(ρ).

Since c̃e is bounded and continuous for all e ∈ E,

max
x∈[n]
{cne (x+ 1)− cne (x)} = max

x∈[n]
{c̃e(

x

n
+

1

n
)− c̃e(

x

n
)}

≤ sup
t∈[0,1]

{c̃e(t+
1

n
)− c̃e(t)}

n→∞→ 0,

and thus for all ε > 0 there is some n(ε) s.t. for all
n > n(ε), we have cne (x+ 1)− cne (x) < ε . By Lemma 3

SC(Gn,a) +
∑
j∈N

Ĉn
j (a−j , a

′
j) − Ĉn

j (a))

≤ SC(Gn,a) +
∑
e∈E

(s′e − se)ĉne (se) +O(nε)

=
∑
e∈E

(sec
n
e (se) + (s′e − se)ĉne (se)) + nε′

≤
∑
e∈E

(λ̂cn(s′e)s′e + µ̂cn(se)se) + nε′ (smoothness)

= λ̂Zn + µ̂SC(Gn,a) + nε′

< λ̂SC(Gn,a′) + µ̂SC(Gn,a) +
1

ρ
Znε′ (Zn > ρn)

= (λ̂+
ε′

ρ
)Zn + µ̂SC(Gn,a)

≤ (1 +
ε′

ρ
)λ̂Zn + µ̂SC(Gn,a). (λ̂ ≥ 1)

Selecting ε′ < δρ (and thus sufficiently small ε > 0, and
n > max{n(ρ), n(ε)}), completes the proof. The BPoA
bound then follows directly from Theorem 2.

Since biased smoothness hold for various pairs of cost
functions, Theorem 4 is quite useful. Mainly, we get that
marginal tolls strongly enforce near-optimal flow if there
are enough players.

Corollary 5. Consider any limit game G̃, where c̃e are
quasi-convex. Then for any δ > 0 there is some n(δ) s.t.

for all n > n(δ), BPoA(Gn, Ĝn) ≤ 1 + δ.

Proof. Consider the continuous version of marginal tolls
ˆ̃c(t) = c̃(t) + t · ∂c(t)∂t [Beckmann et al., 1956].6 The proof
follows directly from Theorem 4 and from the fact that
any quasi-convex function c̃ is (1, 0)-biased smooth w.r.t.
ˆ̃c [Meir and Parkes, 2015b].

5 Tax-sensitivity

We next consider agents with variable sensitivity to mon-
etary tolls, as in [Cole et al., 2006]. Formally, the
marginal toll τe(x) is imposed on edge e, but the cost ex-
perienced by the agents is ĉβe (x) = c(x)+β ·τe(x), where
β is a parameter reflecting how agents trade-off money
for time. Denote by Ĝβ the biased game obtained from
G by replacing every cost function ce(x) with ĉβ(x). We
analyze the equilibrium for a population with parameter
β (where β = 1 means that ĉβe (x) = ĉMe (x)).

In [Meir and Parkes, 2015b], various BPoA bounds are
derived for nonatomic games with various classes of cost
functions (general/convex/polynomial/linear). We show
how these bounds extend to large games.

For large atomic games, all the biased smoothness
bounds from [Meir and Parkes, 2015b] for tax-sensitivity

6Due to rounding, ĉn(x) is very close, but not identical to
the discrete ĉM (x) we previously defined.
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Figure 2: The X-axis shows the tax-sensitivity of
agents, where β = 0 means they ignore the tax.
The double red lines are the tight bounds on the BPoA
for large games with affine costs stated in Corollary 6.

and other biases immediately apply. These bounds are
also known to be tight.

For example, it was shown that affine cost functions

(of the form c̃(t) = at+b for a, b ≥ 0) are (1, (1+β)
2

4 −β)-

biased smooth w.r.t. ˆ̃c(t) as defined above for all β ≤ 1

and ( (1+β)2

4β , 0)-biased smooth for β ≥ 1. We get the

following corollary due to Theorem 4:

Corollary 6. Consider any limit game G̃, where c̃e are
affine. Then for any δ > 0 there is some n(δ) s.t. for all

n > n(δ), BPoA(Gn, Ĝn) ≤ 1

(β+1)− (1+β)2

4

if β ≤ 1, and

BPoA(Gn, Ĝn) ≤ (1+β)2

4β if β ≥ 1.

Another benefit of smoothness-in-the-large is that the

parameters λ̂, µ̂ are typically much smaller for classes of
continuous functions than for the corresponding class of
discrete costs. Indeed, [Feldman et al., 2015] show that
the PoA of large games is significantly smaller due to
this: for linear costs the PoA drops from 5

2 to 4
3 , and for

polynomials of degree d, the PoA drops from Ω(2d) to
O( d

ln d ). Our result shows that this still holds for large
games with biases. For brevity we do not re-state all the
results from [Meir and Parkes, 2015b] for large atomic
games, however Fig. 2 shows the bounds for affine costs.

6 Discussion

We have studied the problem of strongly enforcing opti-
mal flows in atomic congestion games through marginal
congestion tolls. Such tolls always weakly enforce op-
timal flows, and strongly enforce optimal tolls in large
games. Further, our analysis extends to games where
agents’ tax-sensitivity is not aligned with that of the
designer. This is particularly important in the con-
text of mechanism design where we seek to shape
drivers’ incentives and lead the system to a good equi-
librium [Tumer and Agogino, 2006], and when drivers
are subject to cognitive and behavioral biases such as
risk-aversion [Ordóñez and Stier-Moses, 2010; Nikolova
and Stier-Moses, 2015]. One important challenge is to
extend the BPoA bounds to games where agents differ

in their levels of risk aversion or tax sensitivity. This has
been done to some extent in nonatomic games [Meir and
Parkes, 2015a,b].

More broadly, this work provides more evidence for the
usefulness of “biased-smoothness” analysis, in the line of
[Chen et al., 2011; Meir and Parkes, 2015b], and we hope
it can lead to a better understanding of routing games
where agents are subject to either external influences
(like tolls) or behavioral biases.
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A Omitted proofs

Theorem 2. Suppose that (G, Ĝ) is (λ̂, µ̂)-BS. Let
σ be any equilibrium (pure, mixed, correlated, or

coarse-correlated) of the game Ĝ. Then SC (G, σ) ≤
λ̂

1−µ̂SC (G,OPT(G)).

Proof. For a correlated profile σ we denote SC(G, σ) =
Ea∼σ[SC(G,a)].

By Def. 1, there is a profile a′ s.t. Eq. (2) holds for
every profile a.

It is sufficient to prove for a CCE σ. By definition of
CCE, for any i ∈ N, bi ∈ Ai,

Ea∼σ[Ĉi(a)] ≤ Ea∼σ[Ĉi(a−i, bi)]. (3)

SC(G, σ) = Ea∼σ[SC(G,a)] ≤ Ea∼σ[SC(G,a)] (4)

+

(
n∑
i=1

Ea∼σ[Ĉi(a−i, a
′
i)]− Ea∼σ[Ĉi(a)]

)

= Ea∼σ

[
SC(G,a) +

n∑
i=1

Ĉi(a−i, a
′
i)− Ĉi(a)

]
(5)

= Ea∼σ

[
n∑
i=1

(
Ci(a) + Ĉi(a−i, a

′
i)− Ĉi(a)

)]
≤ Ea∼σ

[
λ̂SC(G,OPT(G)) + µ̂SC(G,a)

]
(6)

= λ̂SC(G,OPT(G)) + µ̂SC(G, σ), (7)

where Inequality (4) follows from Eq. (3) with bi = a′i,
(5)+(7) from linearity of expectation, and (6) from
Eq. (2) applied for each a. By rearranging terms, we
get the bound in the theorem.


